Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85162Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 侯欣翰(Hsin-Han Hou) | |
| dc.contributor.author | Yu-Feng Chuang | en |
| dc.contributor.author | 莊玉鳳 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:47:29Z | - |
| dc.date.copyright | 2022-10-04 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-09 | |
| dc.identifier.citation | 1. Heart, G., Global report published on links between periodontal and cardiovascular diseases. 2020. 2. Health Promotion Administration, M. 2014 年健康署年報. 2016 [cited 2022 05.27]; Available from: https://health99.hpa.gov.tw/storage/pdf/materials/21770.pdf. 3. Health Promotion Administration, M. 106 年國民健康訪問調查成果報告. 2022 [cited 2022 05.27]; Available from: https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=364&pid=13636. 4. Welfare, M.o.H.a. 104-105 年度成年與老年人口腔健康調查計畫報告. 2018; Available from: https://dep.mohw.gov.tw/domhaoh/cp-486-39243-107.html. 5. Health Promotion Administration, M. 106-110 年國民口腔健康促進計畫. 2022 [cited 2022 05.27]; Available from: https://dep.mohw.gov.tw/domhaoh/cp-486-1917-107.html. 6. Demir, T., Is there any relation of nanobacteria with periodontal diseases? Medical hypotheses, 2008. 70(1): p. 36-39. 7. Jin, Y. and H.-K. Yip, Supragingival calculus: formation and control. Critical Reviews in Oral Biology & Medicine, 2002. 13(5): p. 426-441. 8. Kinane, D.F., P.G. Stathopoulou, and P.N. Papapanou, Periodontal diseases. Nature reviews Disease primers, 2017. 3(1): p. 1-14. 9. Takeuchi, H., et al., Exit of intracellular Porphyromonas gingivalis from gingival epithelial cells is mediated by endocytic recycling pathway. Cellular microbiology, 2011. 13(5): p. 677-691. 10. Carrion, J., et al., Microbial carriage state of peripheral blood dendritic cells (DCs) in chronic periodontitis influences DC differentiation, atherogenic potential. The Journal of Immunology, 2012. 189(6): p. 3178-3187. 11. Chukkapalli, S.S., et al., Polymicrobial oral infection with four periodontal bacteria orchestrates a distinct inflammatory response and atherosclerosis in ApoEnull mice. PloS one, 2015. 10(11): p. e0143291. 12. Velsko, I.M., et al., Periodontal pathogens invade gingiva and aortic adventitia and elicit inflammasome activation in αvβ6 integrin-deficient mice. Infection and immunity, 2015. 83(12): p. 4582-4593. 13. Schenkein, H.A. and B.G. Loos, Inflammatory mechanisms linking periodontal diseases to cardiovascular diseases. Journal of periodontology, 2013. 84: p. S51- S69. 14. Herrera, D., et al., Periodontal diseases and association with atherosclerotic disease. Periodontology 2000, 2020. 83(1): p. 66-89. 15. Figuero, E., et al., Quantification of periodontal pathogens in vascular, blood, and subgingival samples from patients with peripheral arterial disease or abdominal aortic aneurysms. Journal of periodontology, 2014. 85(9): p. 1182- 1193. 16. Serra e Silva Filho, W., et al., Microbial diversity similarities in periodontal pockets and atheromatous plaques of cardiovascular disease patients. PLoS One, 2014. 9(10): p. e109761. 17. Jain, A., et al., Role for periodontitis in the progression of lipid deposition in an animal model. Infection and immunity, 2003. 71(10): p. 6012-6018. 18. Tsai, C., C. Hayes, and G.W. Taylor, Glycemic control of type 2 diabetes and severe periodontal disease in the US adult population. Community dentistry and oral epidemiology, 2002. 30(3): p. 182-192. 19. Navarro-Gonzalez, J.F. and C. Mora-Fernandez, The role of inflammatory cytokines in diabetic nephropathy. Journal of the American Society of Nephrology, 2008. 19(3): p. 433-442. 20. Lalla, E., et al., Receptor for advanced glycation end products, inflammation, and accelerated periodontal disease in diabetes: mechanisms and insights into therapeutic modalities. Annals of Periodontology, 2001. 6(1): p. 113-118. 21. Polak, D. and L. Shapira, An update on the evidence for pathogenic mechanisms that may link periodontitis and diabetes. Journal of clinical periodontology, 2018. 45(2): p. 150-166. 22. Takahashi, K., et al., Subgingival microflora and antibody responses against periodontal bacteria of young Japanese patients with type 1 diabetes mellitus. Journal of the International Academy of Periodontology, 2001. 3(4): p. 104-111. 23. Preshaw, P., et al., Periodontitis and diabetes: a two-way relationship. Diabetologia, 2012. 55(1): p. 21-31. 24. Casanova, L., F. Hughes, and P. Preshaw, Diabetes and periodontal disease: a two-way relationship. British dental journal, 2014. 217(8): p. 433-437. 25. Preshaw, P.M. and S.M. Bissett, Periodontitis and diabetes. British dental journal, 2019. 227(7): p. 577-584. 26. Scannapieco, F.A., B. Wang, and H.J. Shiau, Oral bacteria and respiratory infection: effects on respiratory pathogen adhesion and epithelial cell proinflammatory cytokine production. Annals of periodontology, 2001. 6(1): p. 78-86. 27. Kuo, L.-C., A.M. Polson, and T. Kang, Associations between periodontal diseases and systemic diseases: a review of the inter-relationships and interactions with diabetes, respiratory diseases, cardiovascular diseases and osteoporosis. Public health, 2008. 122(4): p. 417-433. 28. Scannapieco, F.A., Role of oral bacteria in respiratory infection. Journal of periodontology, 1999. 70(7): p. 793-802. 29. Lee, Y.L., et al., Periodontal disease associated with higher risk of dementia: population‐based cohort study in Taiwan. Journal of the American Geriatrics Society, 2017. 65(9): p. 1975-1980. 30. Su, X., et al., Oral Treponema denticola infection induces Aβ1–40 and Aβ1–42 accumulation in the hippocampus of C57BL/6 mice. Journal of Molecular Neuroscience, 2021. 71(7): p. 1506-1514. 31. Martínez-García, M. and E. Hernández-Lemus, Periodontal inflammation and systemic diseases: an overview. Frontiers in physiology, 2021: p. 1842. 32. Dewhirst, F.E., et al., The human oral microbiome. Journal of bacteriology, 2010. 192(19): p. 5002-5017. 33. Darveau, R.P., Periodontitis: a polymicrobial disruption of host homeostasis. Nature Reviews Microbiology, 2010. 8(7): p. 481-490. 34. Zhu, X., H. Huang, and L. Zhao, PAMPs and DAMPs as the Bridge Between Periodontitis and Atherosclerosis: The Potential Therapeutic Targets. Frontiers in Cell and Developmental Biology, 2022. 10: p. 856118-856118. 35. Mohanty, R., et al., Red complex: polymicrobial conglomerate in oral flora: a review. Journal of family medicine and primary care, 2019. 8(11): p. 3480. 36. Hamada, S., et al., The importance of fimbriae in the virulence and ecology of some oral bacteria. Oral microbiology and immunology, 1998. 13(3): p. 129-138. 37. Potempa, J., et al., Gingipains, the major cysteine proteinases and virulence factors of Porphyromonas gingivalis: structure, function and assembly of multidomain protein complexes. Current Protein and Peptide Science, 2003. 4(6): p. 397-407. 38. Zhang, Z., et al., Porphyromonas gingivalis outer membrane vesicles inhibit the invasion of Fusobacterium nucleatum into oral epithelial cells by downregulating FadA and FomA. Journal of periodontology, 2022. 93(4): p. 515-525. 39. Maekawa, T., et al., Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis. Cell host & microbe, 2014. 15(6): p. 768-778. 40. Mirmohammadsadegh, N., N. Mashreghi Mohammadi, and M. Amin, Potential Treponema denticola-based periodontal vaccine to resolve a global public health challenge: a narrative literature review. Expert Review of Vaccines, 2022: p. 1- 12. 41. Honma, K., et al., Role of a Tannerella forsythia exopolysaccharide synthesis operon in biofilm development. Microbial pathogenesis, 2007. 42(4): p. 156-166. 42. Teughels, W., et al., Adjunctive effect of systemic antimicrobials in periodontitis therapy: a systematic review and meta‐analysis. Journal of Clinical Periodontology, 2020. 47: p. 257-281. 43. Wang Zhihong, Z.J. 疾病保健室-淺談牙周病. 2021 [cited 2022 06.07]; Available from: https://reurl.cc/ZA55gQ. 44. Zaura, E., et al., Same exposure but two radically different responses to antibiotics: resilience of the salivary microbiome versus long-term microbial shifts in feces. MBio, 2015. 6(6): p. e01693-15. 45. Foolad, N. and A. Armstrong, Prebiotics and probiotics: the prevention and reduction in severity of atopic dermatitis in children. Beneficial microbes, 2014. 5(2): p. 151-160. 46. Drago, L., et al., Effects of Lactobacillus salivarius LS01 (DSM 22775) treatment on adult atopic dermatitis: a randomized placebo-controlled study. International journal of immunopathology and pharmacology, 2011. 24(4): p. 1037-1048. 47. Horvath, A., P. Dziechciarz, and H. Szajewska, Meta‐analysis: Lactobacillus rhamnosus GG for abdominal pain‐related functional gastrointestinal disorders in childhood. Alimentary pharmacology & therapeutics, 2011. 33(12): p. 1302-1310. 48. Shen, J., Z.-X. Zuo, and A.-P. Mao, Effect of probiotics on inducing remission and maintaining therapy in ulcerative colitis, Crohn's disease, and pouchitis: meta-analysis of randomized controlled trials. Inflammatory bowel diseases, 2014. 20(1): p. 21-35. 49. Samanta, M., et al., Prophylactic probiotics for prevention of necrotizing enterocolitis in very low birth weight newborns. Journal of tropical pediatrics, 2009. 55(2): p. 128-131. 50. Schiffrin, E., et al., Immunomodulation of human blood cells following the ingestion of lactic acid bacteria. Journal of Dairy Science, 1995. 78(3): p. 491- 497. 51. Niers, L.E., et al., Identification of strong interleukin‐10 inducing lactic acid bacteria which down‐regulate T helper type 2 cytokines. Clinical & Experimental Allergy, 2005. 35(11): p. 1481-1489. 52. Stamatova, I. and J.H. Meurman, Probiotics and periodontal disease. Periodontology 2000, 2009. 51(1): p. 141-151. 53. Mishra, S., S. Rath, and N. Mohanty, Probiotics—A complete oral healthcare package. Journal of Integrative Medicine, 2020. 18(6): p. 462-469. 54. Esteban‐Fernández, A., et al., In vitro beneficial effects of Streptococcus dentisani as potential oral probiotic for periodontal diseases. Journal of Periodontology, 2019. 90(11): p. 1346-1355. 55. Kim, J.W., et al., Effect of Weissella cibaria on the reduction of periodontal tissue destruction in mice. Journal of Periodontology, 2020. 91(10): p. 1367-1374. 56. Moraes, R.M., et al., Live and heat-killed Lactobacillus reuteri reduce alveolar bone loss on induced periodontitis in rats. Archives of Oral Biology, 2020. 119: p. 104894. 57. Han, N., et al., Balanced oral pathogenic bacteria and probiotics promoted wound healing via maintaining mesenchymal stem cell homeostasis. Stem cell research & therapy, 2020. 11(1): p. 1-12. 58. Sanger, F., S. Nicklen, and A.R. Coulson, DNA sequencing with chain- terminating inhibitors. Proceedings of the national academy of sciences, 1977. 74(12): p. 5463-5467. 59. Collins, F.S., M. Morgan, and A. Patrinos, The Human Genome Project: lessons from large-scale biology. Science, 2003. 300(5617): p. 286-290. 60. Jarvie, T., Next generation sequencing technologies. Drug Discovery Today: Technologies, 2005. 2(3): p. 255-260. 61. Materials, A.B. 次世代定序(NGS) 科技介绍. 2015 [cited 2022 05.27]; Available from: https://www.youtube.com/watch?v=jFCD8Q6qSTM. 62. Treangen, T.J. and S.L. Salzberg, Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nature Reviews Genetics, 2012. 13(1): p. 36-46. 63. Eid, J., et al., Real-time DNA sequencing from single polymerase molecules. Science, 2009. 323(5910): p. 133-138. 64. Flusberg, B.A., et al., Direct detection of DNA methylation during single- molecule, real-time sequencing. Nature methods, 2010. 7(6): p. 461-465. 65. Van Dijk, E.L., et al., The third revolution in sequencing technology. Trends in Genetics, 2018. 34(9): p. 666-681. 66. Xiao, T. and W. Zhou, The third generation sequencing: the advanced approach to genetic diseases. Translational pediatrics, 2020. 9(2): p. 163. 67. Jain, M., et al., Nanopore sequencing and assembly of a human genome with ultra- long reads. Nature biotechnology, 2018. 36(4): p. 338-345. 68. Bayley, H. and O.N. Technologies. Oxford Nanopore Technologies. 2008 [cited 2022 05.20]; Available from: https://nanoporetech.com/products/specifications. 69. Manoil, D., K. Al‐Manei, and G.N. Belibasakis, A systematic review of the root canal microbiota associated with apical periodontitis: lessons from next‐ generation sequencing. PROTEOMICS–Clinical Applications, 2020. 14(3): p. 1900060. 70. Bacci, G., et al., Evaluation of the performances of ribosomal database project (RDP) classifier for taxonomic assignment of 16S rRNA metabarcoding sequences generated from Illumina-Solexa NGS. Journal of genomics, 2015. 3: p. 36. 71. Ammer-Herrmenau, C., et al., Comprehensive wet-bench and bioinformatics workflow for complex microbiota using Oxford Nanopore technologies. Msystems, 2021. 6(4): p. e00750-21. 72. Dorey, R.B., et al., The nonpathogenic commensal Neisseria: friends and foes in infectious disease. Current Opinion in Infectious Diseases, 2019. 32(5): p. 490- 496. 73. Oliver, K.J., et al., Neisseria lactamica protects against experimental meningococcal infection. Infection and immunity, 2002. 70(7): p. 3621-3626. 74. Hollis, D.G., G.L. Wiggins, and R.E. Weaver, Neisseria lactamicus sp. n., a lactose-fermenting species resembling Neisseria meningitidis. Applied microbiology, 1969. 17(1): p. 71-77. 75. Wesley Catlin, B., Nutritional profiles of Neisseria gonorrhoeae, Neisseria meningitidis, and Neisseria lactamica in chemically defined media and the use of growth requirements for gonococcal typing. Journal of Infectious Diseases, 1973. 128(2): p. 178-194. 76. Zellkulturen, D.S.v.M.u. Neisseria lactamica-DSMZ. 1969; Available from: https://www.dsmz.de/collection/catalogue/details/culture/DSM-4691. 77. Alber, D., et al., Genetic diversity of Neisseria lactamica strains from epidemiologically defined carriers. Journal of clinical microbiology, 2001. 39(5): p. 1710-1715. 78. Shen, Y. and M. Chen, Prevalence, sequence type, and quinolone resistance of Neisseria lactamica carried in children younger than 15 years in Shanghai, China. Journal of Infection, 2020. 80(1): p. 61-68. 79. Gold, R., et al., Carriage of Neisseria meningitidis and Neisseria lactamica in infants and children. Journal of Infectious Diseases, 1978. 137(2): p. 112-121. 80. Pizza, M. and R. Rappuoli, Neisseria meningitidis: pathogenesis and immunity. Current opinion in microbiology, 2015. 23: p. 68-72. 81. Deasy, A.M., et al., Nasal inoculation of the commensal Neisseria lactamica inhibits carriage of Neisseria meningitidis by young adults: a controlled human infection study. Clinical infectious diseases, 2015. 60(10): p. 1512-1520. 82. Tezera, L., et al., Neisseria lactamica attenuates TLR‐1/2‐induced cytokine responses in nasopharyngeal epithelial cells using PPAR‐γ. Cellular microbiology, 2011. 13(4): p. 554-568. 83. Vaughan, A.T., et al., Neisseria lactamica selectively induces mitogenic proliferation of the naive B cell pool via cell surface Ig. The Journal of Immunology, 2010. 185(6): p. 3652-3660. 84. Marchesan, J., et al., An experimental murine model to study periodontitis. Nature protocols, 2018. 13(10): p. 2247-2267. 85. Barros, S.P., et al., Gingival crevicular fluid as a source of biomarkers for periodontitis. Periodontology 2000, 2016. 70(1): p. 53-64. 86. Lee, H.J., et al., The subgingival microflora and gingival crevicular fluid cytokines in refractory periodontitis. Journal of clinical periodontology, 1995. 22(11): p. 885-890. 87. Dutzan, N., et al., Levels of interferon‐gamma and transcription factor T‐bet in progressive periodontal lesions in patients with chronic periodontitis. Journal of periodontology, 2009. 80(2): p. 290-296. 88. Babu, D.S., et al., Estimation of CCL2/MCP-1 levels in serum and gingival crevicular fluid in periodontal health, disease and after treatment–A clinico biochemical study. Journal of Orofacial Sciences, 2017. 9(2): p. 85. 89. Pan, W., Q. Wang, and Q. Chen, The cytokine network involved in the host immune response to periodontitis. International journal of oral science, 2019. 11(3): p. 1-13. 90. Tawfig, N., Proinflammatory cytokines and periodontal disease. Journal of Dental Problems and Solutions, 2016. 3(1): p. 012-017. 91. Maulani, C., et al., Positive correlation between the level of interferon-gamma and the severity of periodontitis. Pesquisa Brasileira em Odontopediatria e Clínica Integrada, 2020. 19. 92. Fiorillo, L., et al., Interferon crevicular fluid profile and correlation with periodontal disease and wound healing: A systemic review of recent data. International journal of molecular sciences, 2018. 19(7): p. 1908. 93. Berglundh, T., B. Liljenberg, and J. Lindhe, Some cytokine profiles of T‐helper cells in lesions of advanced periodontitis. Journal of Clinical Periodontology, 2002. 29(8): p. 705-709. 94. Mermut, S., et al., Effects of interferon-gamma on bone remodeling during experimental tooth movement. The Angle Orthodontist, 2007. 77(1): p. 135-141. 95. Key Jr, L.L., et al., Long-term treatment of osteopetrosis with recombinant human interferon gamma. New England Journal of Medicine, 1995. 332(24): p. 1594- 1599. 96. Cheng, J., et al., Molecular mechanisms of the biphasic effects of interferon-γ on osteoclastogenesis. Journal of Interferon & Cytokine Research, 2012. 32(1): p. 34-45. 97. Kak, G., M. Raza, and B.K. Tiwari, Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases. Biomolecular concepts, 2018. 9(1): p. 64-79. 98. Koo, G.C. and Y.-H. Gan, The innate interferon gamma response of BALB/c and C57BL/6 mice to in vitro Burkholderia pseudomallei infection. BMC immunology, 2006. 7(1): p. 1-12. 99. Cheng, R., et al., Interleukin-1β is a potential therapeutic target for periodontitis: a narrative review. International journal of oral science, 2020. 12(1): p. 1-9. 100. Garlet, G., Destructive and protective roles of cytokines in periodontitis: a re- appraisal from host defense and tissue destruction viewpoints. Journal of dental research, 2010. 89(12): p. 1349-1363. 101. Mariathasan, S. and D.M. Monack, Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nature Reviews Immunology, 2007. 7(1): p. 31-40. 102. Weber, A., P. Wasiliew, and M. Kracht, Interleukin-1β (IL-1β) processing pathway. Science signaling, 2010. 3(105): p. cm2-cm2. 103. Isaza‐Guzmán, D.M., et al., Salivary levels of NLRP3 inflammasome‐related proteins as potential biomarkers of periodontal clinical status. Journal of periodontology, 2017. 88(12): p. 1329-1338. 104. Sánchez, G.A., et al., Salivary IL‐1β and PGE 2 as biomarkers of periodontal status, before and after periodontal treatment. Journal of clinical periodontology, 2013. 40(12): p. 1112-1117. 105. Park, E., et al., Activation of NLRP3 and AIM2 inflammasomes by Porphyromonas gingivalis infection. Infection and immunity, 2014. 82(1): p. 112- 123. 106. Bostanci, N., et al., Expression and regulation of the NALP3 inflammasome complex in periodontal diseases. Clinical & Experimental Immunology, 2009. 157(3): p. 415-422. 107. Takahashi, K., et al., Assessment of interleukin‐6 in the pathogenesis of periodontal disease. Journal of periodontology, 1994. 65(2): p. 147-153. 108. Yamaji, Y., et al., Inflammatory cytokine gene expression in human periodontal ligament fibroblasts stimulated with bacterial lipopolysaccharides. Infection and immunity, 1995. 63(9): p. 3576-3581. 109. Rogers, J.E., et al., Actinobacillus actinomycetemcomitans lipopolysaccharide‐ mediated experimental bone loss model for aggressive periodontitis. Journal of periodontology, 2007. 78(3): p. 550-558. 110. Sawada, S., et al., Enhancement of gingival inflammation induced by synergism of IL-1β and IL-6. Biomedical research, 2013. 34(1): p. 31-40. 111. Brinson, C.W., et al., Lipopolysaccharide and IL-1β coordinate a synergy on cytokine production by upregulating MyD88 expression in human gingival fibroblasts. Molecular immunology, 2016. 79: p. 47-54. 112. Wu, Q., et al., IL-6 enhances osteocyte-mediated osteoclastogenesis by promoting JAK2 and RANKL activity in vitro. Cellular Physiology and Biochemistry, 2017. 41(4): p. 1360-1369. 113. Shimada, Y., et al., The effect of periodontal treatment on serum leptin, interleukin‐6, and C‐reactive protein. Journal of periodontology, 2010. 81(8): p. 1118-1123. 114. D’Aiuto, F., et al., Periodontitis and systemic inflammation: control of the local infection is associated with a reduction in serum inflammatory markers. Journal of dental research, 2004. 83(2): p. 156-160. 115. Nibali, L., et al., Interleukin‐6 in oral diseases: a review. Oral diseases, 2012. 18(3): p. 236-243. 116. Ozaki, K., et al., interleukin‐1β and tumor necrosis factor‐α stimulate synergistically the expression of monocyte chemoattractant protein‐1 in fibroblastic cells derived from human periodontal ligament. Oral microbiology and immunology, 1996. 11(2): p. 109-114. 117. Hanazawa, S., et al., Expression of monocyte chemoattractant protein 1 (MCP-1) in adult periodontal disease: increased monocyte chemotactic activity in crevicular fluids and induction of MCP-1 expression in gingival tissues. Infection and immunity, 1993. 61(12): p. 5219-5224. 118. Milward, M.R., et al., Differential activation of NF-κB and gene expression in oral epithelial cells by periodontal pathogens. Clinical & Experimental Immunology, 2007. 148(2): p. 307-324. 119. Deshmane, S.L., et al., Monocyte chemoattractant protein-1 (MCP-1): an overview. Journal of interferon & cytokine research, 2009. 29(6): p. 313-326. 120. Kim, M.S., et al., MCP-1-induced human osteoclast-like cells are tartrate- resistant acid phosphatase, NFATc1, and calcitonin receptor-positive but require receptor activator of NFκB ligand for bone resorption. Journal of Biological Chemistry, 2006. 281(2): p. 1274-1285. 121. Kim, M.S., C.J. Day, and N.A. Morrison, MCP-1 is induced by receptor activator of nuclear factor-κB ligand, promotes human osteoclast fusion, and rescues granulocyte macrophage colony-stimulating factor suppression of osteoclast formation. Journal of Biological Chemistry, 2005. 280(16): p. 16163-16169. 122. Faustman, D. and M. Davis, TNF receptor 2 pathway: drug target for autoimmune diseases. Nature reviews Drug discovery, 2010. 9(6): p. 482-493. 123. Dinarello, C.A., Proinflammatory cytokines. Chest, 2000. 118(2): p. 503-508. 124. Noh, M.K., et al., Assessment of IL‐6, IL‐8 and TNF‐α levels in the gingival tissue of patients with periodontitis. Experimental and therapeutic medicine, 2013. 6(3): p. 847-851. 125. Liu, T., et al., NF-κB signaling in inflammation. Signal transduction and targeted therapy, 2017. 2(1): p. 1-9. 126. Oeckinghaus, A. and S. Ghosh, The NF-κB family of transcription factors and its regulation. Cold Spring Harbor perspectives in biology, 2009. 1(4): p. a000034. 127. Graves, D.T. and D. Cochran, The contribution of interleukin‐1 and tumor necrosis factor to periodontal tissue destruction. Journal of periodontology, 2003. 74(3): p. 391-401. 128. Thilagar, S., et al., Comparison of serum tumor necrosis factor-α levels in rheumatoid arthritis individuals with and without chronic periodontitis: A biochemical study. Journal of Indian Society of Periodontology, 2018. 22(2): p. 116. 129. Gokul, K., Estimation of the level of tumor necrosis factor-α in gingival crevicular fluid and serum in periodontal health and disease: a biochemical study. Indian Journal of Dental Research, 2012. 23(3): p. 348. 130. Teles, R.P., et al., Salivary cytokine levels in subjects with chronic periodontitis and in periodontally healthy individuals: a cross‐sectional study. Journal of periodontal research, 2009. 44(3): p. 411-417. 131. Bergamo, A.Z.N., et al., Cytokine profile changes in gingival crevicular fluid after placement different brackets types. Archives of oral biology, 2018. 85: p. 79-83. 132. Luminex. Luminex Multiplex Assay Principle. 1995 [cited 2022 05.26]; Available from: https://www.rndsystems.com/resources/technical/luminex- assay-principle. 133. Yang, C.-C., et al., Inhibitory effect of PPARγ on NLRP3 inflammasome activation. Theranostics, 2021. 11(5): p. 2424. 134. Cunard, R., et al., Repression of IFN-γ expression by peroxisome proliferator- activated receptor γ. The Journal of Immunology, 2004. 172(12): p. 7530-7536. 135. Vaughan, A.T., et al., Absence of mucosal immunity in the human upper respiratory tract to the commensal bacteria Neisseria lactamica but not pathogenic Neisseria meningitidis during the peak age of nasopharyngeal carriage. The Journal of Immunology, 2009. 182(4): p. 2231-2240. 136. Honda, T., et al., Pioglitazone, a peroxisome proliferator-activated receptor-γ agonist, attenuates myocardial ischemia–reperfusion injury in mice with metabolic disorders. Journal of molecular and cellular cardiology, 2008. 44(5): p. 915-926. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85162 | - |
| dc.description.abstract | 牙周病為好發於成年人的慢性疾病,盛行將近世界人口的一半 。相較於癌症、中風等疾病,牙周病導致死亡的情況很罕見,但有研究表明、罹患牙周病可能導致著嚴重的全身系統性疾病。嚴重的牙周病會使牙齒脫落,並影響溝通並導致咀嚼困難。因此、牙周病治療為當今健康保健與長期照護討論中,常被提及的重要議題。引起牙周病的原因中,口腔環境和細菌失衡,使生物膜累積,進而導致牙周病產生,誘導牙周組織損傷。因此,透過適時補充口腔益生菌,恢復口腔的微生物平衡而更有效的治療牙周病。 在實驗室先前的臨床檢體分析中,以第三代定序(Oxford Nanopore Technologies )分析了牙周病患者與非牙周病患者在臨床上牙齦下牙菌斑的全基因序列。發現跟牙周病患相比,Neisseria lactamica(N. lactamica)在非牙周病患者的牙齦下牙菌斑中比牙周病患者高出40倍。N. lactamica 是革蘭氏陰性菌,在37℃微需氧的環境下生長。研究顯示,當Neisseria meningitidis(腦膜炎致病菌)對鼻咽上皮細胞引起發炎反應時,N. lactamica能有效抑制發炎,但是到目前為止,還沒有文章討論N. lactamica與牙周病這類發炎疾病的關係。因此本研究目的為了解N. lactamica是否能在牙周病中發揮保護的作用。 我們在處理抗生素卡納黴素 7天後的小鼠口中第一大臼齒和第二大臼齒之間放入多股縫合線(縫合線),誘導形成牙周病。24小時後在牙周病部位以兩種方式給予N. lactamica,分別是:在埋線部位注射一次,注射後第8天犧牲,其次、每天在繩結埋入部位塗抹N. lactamica,連續塗抹15天,觀察在不同給予方式的情形下,N. lactamica對牙周病的效果。我們收集小鼠牙齦溝液(gingival crevicular fluid,GCF),以Luminex® 200 Multiplex分析其中細胞因子的變化。另收集小鼠右上顎組織,進行組織病理學之研究與分析,觀察齒槽骨變化、嗜中性白血球浸潤和破骨細胞活化的情況。 結果顯示, 雖然N. lactamica沒有減緩齒槽骨流失,但降低了GCF中縫合線誘導的各細胞因子:Interferon gamma(IFN-γ)、Interleukin 1 beta(IL-1β)、Interleukin 6(IL-6)、Monocyte chemoattractant protein-1(MCP-1)和Tumor necrosis factor alpha(TNF-α),以及組織中的嗜中性白血球浸潤和破骨細胞活化, N. lactamica在牙周病中扮演降低發炎的角色,其中牽涉的機制仍有待釐清。 | zh_TW |
| dc.description.abstract | Periodontal disease is a chronic disease with high prevalence worldwide that affects more than half adults. Comparing to cancer or stroke, periodontal disease is rarely lethal. However, studies had shown that periodontal disease may lead to serious systemic diseases. Severe periodontal disease causes tooth loss that results in the difficulty of communication and mastication. Therefore, the improving treatment of periodontal disease is an important issue today. Periodontal disease is caused by an imbalance of the oral environment and microbial dysbiosis with biofilms accumulation and periodontal tissue damage. Therefore, restoring the microbial balance in oral cavity by daily supplement of oral probiotics may treat periodontal disease more effectively. We used the third-generation, the Oxford Nanopore Technologies sequencing system to analyze the whole genome sequence of clinical subgingival dental plaque from patients with or without periodontal disease. It was found that Neisseria Lactamica (N. lactamica) was 40 times higher in subgingival dental plaque from non-periodontal disease patients than periodontal disease patients. N. lactamica is a gram-negative bacterium and grows in a microaerophilic environment at 37°C. N. lactamica had proved effectively inhibits Neisseria meningitidis (meningitis-causing bacteria)-triggered inflammation in nasopharyngeal epithelial cells. So far, there is no article discuss the relationship of N. lactamica and periodontal disease. The purpose of this study was to determine whether N. lactamica could play protective roles in periodontal disease. We rapidly induced periodontal disease by placing ligature between the maxillary first and second molars of 7 days kanamycin-treated mice. Twenty-four hours later, N. lactamica was treated at the ligature-implanted site in two ways: first, injecting once at Day 8, and second, daily inoculating from Day 8 to Day 22, and evaluated the effects of different treated methods on N. lactamica-ameliorated periodontal disease. The mouse gingival crevicular fluid (GCF) was collected, and the changes of cytokines were analyzed by Luminex® 200 Multiplex analysis. In addition, the collected maxillary tissues were applied for histopathological experiments and analysis with the changes in alveolar bone, neutrophil infiltration and osteoclast activation. The results showed that N. lactamica had no effects on alveolar bone loss, but reduced ligature-induced cytokines: Interferon gamma (IFN-γ), Interleukin 1 beta (IL-1β), Interleukin 6 (IL-6), Monocyte chemoattractant protein-1 (MCP-1) and Tumour necrosis factor alpha (TNF-α) in GCF, as well as neutrophil infiltration and osteoclast activation in maxillary tissues. N. lactamica plays anti-inflammatory roles in periodontal disease, but the underling mechanisms are needed to uncover. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:47:29Z (GMT). No. of bitstreams: 1 U0001-1204202222433300.pdf: 45025728 bytes, checksum: 46361a7bcaec8c680e7a7b90bd03a3a6 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 目 錄 口試委員審定書 i 摘要 ii Abstract iv 第一章 前言 1 1.1牙周病 1 1.2口腔、免疫、微生物群與病原菌 4 1.3牙周病與益生菌 6 1.4基因定序方法、第三代定序與微生物 8 1.5 Neisseria lactamica與其特性 10 1.6小鼠牙周病模型建構 11 1.7各發炎細胞因子與牙周病關聯 12 1.7.1 IFN-γ 12 1.7.2 IL-1β 13 1.7.3 IL-6 14 1.7.4 MCP-1 15 1.7.5 TNF-α 15 第二章 材料與方法 17 2.1 Neisseria lactamica取得 17 2.1.1 Neisseria lactamica培養方式 17 2.1.2細菌數量計算 18 2.2小鼠來源 18 2.2.1小鼠實驗設計 18 2.2.2小鼠檢體回收與處理 20 2.3微型電腦斷層掃描(Micro-computed tomography,Micro-CT) 20 2.4蘇木精-伊紅染色(Hematoxylin and eosin stain) 21 2.5免疫組織化學分析 (Immunohistochemistry, IHC) 22 2.5.1骨髓過氧化酵素(Myeloperoxidase, MPO) 22 2.5.2抗酒石酸酸性磷酸酶染色(Tartrate-resistant acid phosphatase Stain, TRAP) 23 2.6多重免疫測定(Multiplex Immunoassays) 24 2.7統計分析 25 第三章 結果 26 3.1 N. lactamica培養情形 26 3.2 牙周病誘導小鼠與N. lactamica給予實驗設計 26 3.3 N. lactamica並無減緩牙周病造成的骨流失 27 3.4 N. lactamica可降低牙齦溝液的促發炎细胞因子 28 3.5 N. lactamica降低嗜中性白血球浸潤 28 3.6 N. lactamica注射降低破骨細胞活化 29 第四章 討論與結論 30 圖目錄 34 表目錄 53 參考文獻 54 圖目錄 圖 一、N. lactamica在液體和固體培養基及其生長曲線和菌數定量表。 34 圖 二、小鼠誘導牙周病和N. lactamica注射的實驗流程圖。 35 圖 三、小鼠誘導牙周病和N. lactamica接種的實驗流程圖。 36 圖 四、通過Mrico-CT成像顯示,注射N. lactamica無法阻止小鼠齒槽骨流失。 37 圖 五、通過Mrico-CT成像顯示,接種N. lactamica無法阻止小鼠齒槽骨流失。 38 圖 六、以蘇木精-伊紅染色觀察,發現注射N. lactamica無法阻止小鼠齒槽骨流失。 39 圖 七、以蘇木精-伊紅染色觀察,發現接種N. lactamica無法阻止小鼠齒槽骨流失。 40 圖 八、小鼠GCF中,注射N. lactamica降低牙周病誘導的IL-1β、IL-6、TNF-α。 42 圖 九、小鼠GCF中,接種N. lactamica 降低牙周病誘導的IFN-γ、IL-1β、IL-6、MCP-1和TNF-α。 44 圖 十、注射N. lactamica使小鼠牙周病部位組織內嗜中性白血球浸潤情形下降。 46 圖 十一、接種N. lactamica使小鼠牙周病部位組織內嗜中性白血球浸潤情形下降。 48 圖 十二、注射N. lactamica使小鼠牙周病部位組織內活化破骨細胞減少。 50 圖 十三、接種N. lactamica後小鼠牙周病部位組織內破骨細胞無變化。 52 表目錄 表 一、臨床檢體中,與牙周病病人比較,非牙周病病人的Neisseria lactamica在牙菌斑中高出40倍。 53 | |
| dc.language.iso | zh-TW | |
| dc.subject | 牙齦下牙菌斑 | zh_TW |
| dc.subject | 益生菌 | zh_TW |
| dc.subject | 第三代定序 | zh_TW |
| dc.subject | 牙周病 | zh_TW |
| dc.subject | Neisseria lactamica | zh_TW |
| dc.subject | Neisseria lactamica | en |
| dc.subject | periodontal disease | en |
| dc.subject | oral probiotic | en |
| dc.subject | the Oxford Nanopore Technologies sequencing system | en |
| dc.subject | subgingival dental plaque | en |
| dc.title | Neisseria lactamica在牙周病進展中所扮演的角色 | zh_TW |
| dc.title | The roles of Neisseria lactamica in periodontal disease progression | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳漪紋(Yi-Wen Chen),葉秋月(Yeh Chiou Yueh) | |
| dc.subject.keyword | 牙周病,益生菌,第三代定序,牙齦下牙菌斑,Neisseria lactamica, | zh_TW |
| dc.subject.keyword | periodontal disease,oral probiotic,the Oxford Nanopore Technologies sequencing system,subgingival dental plaque,Neisseria lactamica, | en |
| dc.relation.page | 64 | |
| dc.identifier.doi | 10.6342/NTU202200691 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-09 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-05 | - |
| Appears in Collections: | 口腔生物科學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-1204202222433300.pdf Access limited in NTU ip range | 43.97 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
