Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85152
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳逸民(Yih-Min Wu)
dc.contributor.authorYu-Hsuan Changen
dc.contributor.author張育暄zh_TW
dc.date.accessioned2023-03-19T22:46:50Z-
dc.date.copyright2022-09-30
dc.date.issued2022
dc.date.submitted2022-09-26
dc.identifier.citationAkkar, S., and Bommer, J. J. (2006). Influence of long‐period filter cut‐off on elastic spectral displacements. Earthquake Engineering and Structural Dynamics, 35(9), 1145-1165. Allen, R. M., and Kanamori, H. (2003). The potential for earthquake early warning in southern California. Science. Allen, R. M., Gasparini, P., Kamigaichi, O., and Bose, M. (2009). The status of earthquake early warning around the world: An introductory overview. Seismological research letters, 80(5), 682-693. Allen, R. V. (1978). Automatic earthquake recognition and timing from single traces. Bulletin of the seismological society of America, 68(5), 1521-1532. Colombelli, S., Zollo, A., Festa, G., and Kanamori, H. (2012). Early magnitude and potential damage zone estimates for the great Mw 9 Tohoku‐Oki earthquake. Geophysical Research Letters, 39(22). Cooper, J. D. (1868). Earthquake indicator. San Francisco Bulletin., November 3, 1868. Electrical Power Research Institute (1988). A criterion for determining exceedance of the operating basis earthquake. Electric Power Research Institute. (EPRI NP-5930). Electrical Power Research Institute (1991). Standardization of the cumulative absolute velocity. Electric Power Research Institute. (EPRI TR-100082). Festa, G., Zollo, A., and Lancieri, M. (2008). Earthquake magnitude estimation from early radiated energy. Geophysical research letters, 35(22). Hanks, T. C., and Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84(B5), 2348-2350. Heaton, T. H., Tajima, F., and Mori, A. W. (1986). Estimating ground motions using recorded accelerograms. Surveys in Geophysics, 8(1), 25-83. Hoshiba, M., and Iwakiri, K. (2011). Initial 30 seconds of the 2011 off the Pacific coast of Tohoku Earthquake (Mw 9.0)—amplitude and τ c for magnitude estimation for Earthquake Early Warning—. Earth, Planets and Space, 63(7), 553-557. Kanamori, H. (2005). Real-time seismology and earthquake damage mitigation. Annu. Rev. Earth Planet. Sci., 33, 195-214. Kramer, S. L., and Mitchell, R. A. (2006). Ground motion intensity measures for liquefaction hazard evaluation. Earthquake Spectra, 22(2), 413-438. Lee, S. J., Huang, B. S., Ando, M., Chiu, H. C., and Wang, J. H. (2011). Evidence of large scale repeating slip during the 2011 Tohoku‐Oki earthquake. Geophysical Research Letters, 38(19). Lin, T. L., and Wu, Y. M. (2012). A fast magnitude estimation for the 2011 Mw 9.0 great Tohoku earthquake. Seismological Research Letters, 83(4), 666-671. Nakamura, Y. (1988). On the urgent earthquake detection and alarm system (UrEDAS). In Proc. of the 9th World Conference on Earthquake Engineering (Vol. 7, pp. 673-678). Olson, E. L., and Allen, R. M. (2005). The deterministic nature of earthquake rupture. Nature, 438(7065), 212-215. Richter, C. F. (1935). An instrumental earthquake magnitude scale. Bulletin of the seismological society of America, 25(1), 1-32. Satriano, C., Wu, Y. M., Zollo, A., and Kanamori, H. (2011). Earthquake early warning: Concepts, methods and physical grounds. Soil Dynamics and Earthquake Engineering, 31(2), 106-118. Shieh, J. T., Wu, Y. M., and Allen, R. M. (2008). A comparison of τc and τpmax for magnitude estimation in earthquake early warning. Geophysical Research Letters, 35(20). Wu, Y. M., and Kanamori, H. (2005b). Rapid assessment of damage potential of earthquakes in Taiwan from the beginning of P waves. Bulletin of the Seismological Society of America, 95(3), 1181-1185. Wu, Y. M., and Kanamori, H. (2008b). Exploring the feasibility of on-site earthquake early warning using close-in records of the 2007 Noto Hanto earthquake. Earth, Planets and Space, 60(2), 155-160. Wu, Y. M., and Kanamori, H. (2005a). Experiment on an onsite early warning method for the Taiwan early warning system. Bulletin of the Seismological Society of America, 95(1), 347-353. Wu, Y. M., and Kanamori, H. (2008a). Development of an earthquake early warning system using real-time strong motion signals. Sensors, 8(1), 1-9. Wu, Y. M., and Teng, T. L. (2004). Near real-time magnitude determination for large crustal earthquakes. Tectonophysics, 390(1-4), 205-216. Wu, Y. M., and Zhao, L. (2006). Magnitude estimation using the first three seconds P‐wave amplitude in earthquake early warning. Geophysical Research Letters, 33(16). Wu, Y. M., Teng, T. L., Shin, T. C., and Hsiao, N. C. (2003). Relationship between peak ground acceleration, peak ground velocity, and intensity in Taiwan. Bulletin of the Seismological Society of America, 93(1), 386-396. Wu, Y. M., Yen, H. Y., Zhao, L., Huang, B. S., and Liang, W. T. (2006). Magnitude determination using initial P waves: A single‐station approach. Geophysical Research Letters, 33(5). Wu, Y. M., Kanamori, H., Allen, R. M., and Hauksson, E. (2007). Determination of earthquake early warning parameters, τc and Pd, for southern California. Geophysical Journal International, 170(2), 711-717. Yamada, M., and Mori, J. (2009). Using τc to estimate magnitude for earthquake early warning and effects of near‐field terms. Journal of Geophysical Research: Solid Earth, 114(B5). Ziv, A. (2014). New frequency‐based real‐time magnitude proxy for earthquake early warning. Geophysical Research Letters, 41(20), 7035-7040. Zollo, A., Amoroso, O., Lancieri, M., Wu, Y. M., and Kanamori, H. (2010). A threshold-based earthquake early warning using dense accelerometer networks. Geophysical Journal International, 183(2), 963-974. 黃皓昀 (2021) ,台灣地區累積絕對速度於地震規模估計及預警之應用,國立台灣大學地質科學研究所碩士論文,共91頁。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85152-
dc.description.abstract快速準確的提供規模估計是地震預警的關鍵技術,利用近震央有限測站的地震早期訊號 (P波),快速並推估可靠的地震規模仍是現今地震預警研究中的重大挑戰。地震預警可分為現地型與區域型,現地型的優勢在於能針對觀測到的P波早期訊號快速計算後續破壞性震波強度,而區域型預警優點則是利用近震央的數個測站資訊,綜合推估地震規模、位置、以及各地震度,其準確性較高。為整合兩種預警系統的優勢,黃皓昀 (2021)於台灣地區地震研究中,探討P波到時後1至20秒每秒時間窗下,綜合分析五個初始地動參數: 累積絕對速度(Cumulative Absolute Velocity , CAV)、累積絕對位移(Cumulative Absolute Displacement, CAD)、累積絕對位移積分(Cumulative Absolute Absement, CAA)、位移峰值(Peak displacement, Pd) 及P波平均週期(Average period, τc),估算最終累積絕對速度 (estimated Final Cumulative Absolute Velocity, eCAVF),並應用於等當量地震矩規模 (equivalent moment magnitude, Mew)中。本研究參考相關指標參數,使用日本地區規模Mw大於5.5的95起地震事件之強地動紀錄,基於地震預警的理念精簡計算流程,探討各初始地動參數直接應用於規模預估上的效能。結果顯示五個參數組合的規模預估值,僅需利用距離震央最近的六個測站即可獲得良好的規模預估結果,其估計規模在一秒至二十秒時窗皆在標準差 ± 0.3範圍內,顯示本研究中利用五個地動參數組合的經驗關係式適用於日本的中大規模地震,並且可以有效地縮短前人於預估規模上所花費的時間。此外,於本研究中所使用的地動參數中顯示,CAA比起常見的地動參數Pd具有更佳的規模預估效能,建議於未來地震預警系統下可以加入CAA作為更好的規模估計參數。zh_TW
dc.description.abstractRapid and accurate magnitude determination is a key task for earthquake early warning (EEW). Using the initial signals (P wave) from a few stations near epicenter to obtain rapid and reliable magnitude is still a major challenge in recent EEW. Onsite EEW uses the initial P wave signals from a single station or a small array to calculate the destructive S wave intensity rapidly. Regional EEW uses the seismic recordings from several stations near the epicenter to obtain the intensity, location, and magnitude of earthquake. It has the advantage of higher accuracy compared to onsite EEW. Huang (2021) integrated the advantages of the two EEW type systems in Taiwan. First, they combine the five initial ground motion parameters: Cumulative Absolute Velocity (CAV)、Cumulative Absolute Displacement (CAD)、Cumulative Absolute Absement (CAA)、Pd and τc to obtain the estimated Final Cumulative Absolute Velocity (eCAVF), and then, apply eCAVF to obtain equivalent moment magnitude (Mew). Our study will choose the Mw greater than 5.5 seismic events. This study follows the same analysis in Huang (2021), and apply these parameters to the magnitude estimation for regional EEW in Japan, trying to reduce the bias caused by the eCAVF. The purpose of this study is establishing the attenuation relationships for moderate to great earthquakes in Japan at 1 to 20 second time windows after P arrival by using the integration of five ground motion parameters, and analyzing the ability of each initial ground motion parameter for magnitude estimation. Results show that the magnitude estimation based on the integration of the five parameters can obtain good magnitude estimation results by only using the six stations closest to the epicenter, and the standard deviation between the estimated and real Mw varies from 0.29 to 0.20 for the 1 to 20 seconds after the P arrival, which are within the magnitude estimation tolerance error range ± 0.3. This indicate that the attenuation relationships using the integration of five initial ground motion parameters are applicable to moderate to great earthquakes in Japan, and it can reduce the time spent on the magnitude determination effectively. Additionally, results show that the CAA used in this study has better magnitude determination ability than the common ground motion parameter - Pd. This study suggested CAA can be added as a better magnitude determination parameter for EEW system in the future.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:46:50Z (GMT). No. of bitstreams: 1
U0001-2609202213240200.pdf: 11762008 bytes, checksum: 29c48406aa6a4f953b5271ae77c95dab (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 i 致謝 ii 中文摘要 iv ABSTRACT v 目錄 vii 圖目錄 ix 表目錄 xii 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 4 第二章 文獻回顧 5 2.1 常見地震預警參數 5 2.2 CAV參數之應用 9 2.2.1 CAV於地震速報系統(Rapid Reporting System, RRS)之應用 10 2.2.2 CAV於地震預警系統之應用 14 第三章 研究資料與研究方法 19 3.1 日本強地動觀測網 (K-NET) 簡介 19 3.2 地震資料選取 21 3.3 資料前處理 28 3.3.1 P波到時 (P arrival time, Tp) 挑選流程 28 3.3.2 強地動結束時間 (End of event time, Te) 定義及篩選 33 3.4 研究流程 36 3.5 濾波器參數設定 38 3.6 五個地動參數介紹 39 3.7 Mew經驗關係式之建立 46 第四章 研究結果與分析 48 4.1 估計與實際的Mw ─ 94起地震事件之全部測站紀錄分析結果 50 4.2 估計與實際的Mw ─ 94起地震事件之震央距最短的四至十個測站紀錄分析結果與比較 54 第五章 討論 72 5.1 不同地動參數組合於計算Mew上的結果 72 5.1.1 四個參數組合 74 5.1.2 單個參數 76 5.1.3 兩個參數與三個參數組合 78 5.1.4 綜合討論 82 5.2 Mw 9.1東北大地震預估規模低估之探討 85 5.3 CAA使用三軸與單軸向計算之迴歸效能 93 第六章 結論 96 參考文獻 98 附錄A K-NET強地動測站資訊 101 附錄B 94起地震全部測站迴歸之事件平均Mew 111 附錄C 94起地震震央距最近的六個測站迴歸之事件平均Mew 113 附錄D 各地動參數組合之殘差標準差比較圖 115 附錄E CAA迴歸結果 118 附錄F 95起地震迴歸結果 121
dc.language.isozh-TW
dc.title日本地區Mw ≥ . 地震之快速規模估計zh_TW
dc.titleFast magnitude estimation for Mw ≥ . earthquakes in Japanen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭俊翔(Chun-Hsiang Kuo),黃信樺(Hsin-Hua Huang),陳達毅(Da-Yi Chen)
dc.subject.keyword地震,區域型地震預警,累積絕對速度,累積絕對位移積分,日本,zh_TW
dc.subject.keywordEarthquake,Regional earthquake early warning,Cumulative absolute velocity,Cumulative absolute absement,Japan,en
dc.relation.page123
dc.identifier.doi10.6342/NTU202204079
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
dc.date.embargo-lift2022-09-30-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
U0001-2609202213240200.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
11.49 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved