請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85149完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 袁孝維(Hsiao-Wei Yuan) | |
| dc.contributor.author | Siang-Ru Huang | en |
| dc.contributor.author | 黃湘如 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:46:39Z | - |
| dc.date.copyright | 2022-08-18 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-10 | |
| dc.identifier.citation | Astaras, C., Linder, J., Wrege, P., Orume, R., Macdonald, D., 2017. Passive acoustic monitoring as a law enforcement tool for Afrotropical rainforests. Frontiers in Ecology and the Environment 15, 233-234. Barber, J.R., Crooks, K.R., Fristrup, K.M., 2010. The costs of chronic noise exposure for terrestrial organisms. Trends Ecol Evol 25, 180-189. Baudains, T., Lloyd, P., 2007. Habituation and habitat changes can moderate the impacts of human disturbance on shorebird breeding performance. Animal Conservation 10, 400-407. Bermúdez-Cuamatzin, E., A. A. Ríos-Chelén, D. Gil and C. M. Garcia, 2011. Experimental evidence for real-time song frequency shift in response to urban noise in a passerine bird. Biology Letters7(1):36-38. Boelman, N.T., Asner, G.P., Hart, P.J., Martin, R.E., 2007. Multi-trophic invasion resistance in Hawaii: bioacoustics, field surveys, and airborne remote sensing. Ecological Applications 17, 2137-2144. Brown, C.L., Reed, S.E., Dietz, M.S., Fristrup, K.M., 2013. Detection and Classification of Motor Vehicle Noise in a Forested Landscape. Environmental management (New York) 52, 1262-1270. Buxton, R.T., McKenna, M.F., Mennitt, D., Fristrup, K., Crooks, K., Angeloni, L., Wittemyer, G., 2017. Noise pollution is pervasive in U.S. protected areas. Science 356, 531-533. Connell, J.H., 1978. Diversity in Tropical Rain Forests and Coral Reefs. Science 199, 1302-1310. Darras, K., Pütz, P., Fahrurrozi, Rembold, K., Tscharntke, T., 2016. Measuring sound detection spaces for acoustic animal sampling and monitoring. Biological Conservation 201, 29-37. Davidson, B.M., Antonova, G., Dlott, H., Barber, J.R., Francis, C.D., 2017. Natural and anthropogenic sounds reduce song performance: insights from two emberizid species. Behavioral Ecology 28, 974-982. Dawson, A., 2008. Control of the annual cycle in birds: endocrine constraints and plasticity in response to ecological variability. Philosophical Transactions of the Royal Society B: Biological Sciences 363, 1621-1633. Deconto, L.S., Novelli, M.B.S., Lima, D.J.d.S., Monteiro-Filho, E.L.A., 2021. Influence of natural and anthropogenic sound sources on the soundscape of the Cananéia estuary, southeastern Brazil. Marine pollution bulletin 169, 112502-112502. Deichmann, J.L., Hernández-Serna, A., Delgado C, J.A., Campos-Cerqueira, M., Aide, T.M., 2017. Soundscape analysis and acoustic monitoring document impacts of natural gas exploration on biodiversity in a tropical forest. Ecological Indicators 74, 39-48. Derryberry, E.P., Phillips, J.N., Derryberry, G.E., Blum, M.J., Luther, D., 2020. Singing in a silent spring: Birds respond to a half-century soundscape reversion during the COVID-19 shutdown. Science 370, 575-579. Desjonquères, C., Gifford, T., Linke, S., 2020. Passive acoustic monitoring as a potential tool to survey animal and ecosystem processes in freshwater environments. Freshwater Biology 65, 7-19. Dornelas, M., Gotelli, N.J., McGill, B., Shimadzu, H., Moyes, F., Sievers, C., Magurran, A.E., 2014. Assemblage Time Series Reveal Biodiversity Change but Not Systematic Loss. Science 344, 296-299. Duarte, C.M., Chapuis, L., Collin, S.P., Costa, D.P., Devassy, R.P., Eguiluz, V.M., Erbe, C., Gordon, T.A.C., Halpern, B.S., Harding, H.R., Havlik, M.N., Meekan, M., Merchant, N.D., Miksis-Olds, J.L., Parsons, M., Predragovic, M., Radford, A.N., Radford, C.A., Simpson, S.D., Slabbekoorn, H., Staaterman, E., Opzeeland, I.C.V., Winderen, J., Zhang, X., Juanes, F., 2021. The soundscape of the Anthropocene ocean. Science 371, eaba4658. Ellison, W.T., Southall, B.L., Clark, C.W., Frankel, A.S., 2012. A New Context-Based Approach to Assess Marine Mammal Behavioral Responses to Anthropogenic Sounds. Conservation biology 26, 21-28. Enari, H., Enari, H., Maruyama, T., Okuda, K., Okuda, K., 2019. An evaluation of the efficiency of passive acoustic monitoring in detecting deer and primates in comparison with camera traps. Ecological Indicators 98, 753-762. Ey, E., Fischer, J., 2009. THE “ACOUSTIC ADAPTATION HYPOTHESIS”—A REVIEW OF THE EVIDENCE FROM BIRDS, ANURANS AND MAMMALS. Bioacoustics 19, 21-48. Farina, A., Gage, S., Salutari, P., 2018. Testing the ecoacoustics event detection and identification (EEDI) approach on Mediterranean soundscapes. Ecological Indicators 85, 698-715. Farina, A., Pieretti, N., Piccioli, L., 2011. The soundscape methodology for long-term bird monitoring: A Mediterranean Europe case-study. Ecological Informatics 6, 354-363. Francis, C.D., Barber, J.R., 2013. A framework for understanding noise impacts on wildlife: an urgent conservation priority. Frontiers in ecology and the environment 11, 305-313. Fuller, S., Axel, A.C., Tucker, D., Gage, S.H., 2015. Connecting soundscape to landscape: Which acoustic index best describes landscape configuration? Ecological Indicators 58, 207-215. Gage, S.H., Axel, A.C., 2014. Visualization of temporal change in soundscape power of a Michigan lake habitat over a 4-year period. Ecological Informatics 21, 100-109. Gasc, A., Francomano, D., Dunning, J.B., Pijanowski, B.C., 2017. Future directions for soundscape ecology: The importance of ornithological contributions. The Auk 134, 215-228. Ghadiri Khanaposhtani, M., Gasc, A., Francomano, D., Villanueva-Rivera, L.J., Jung, J., Mossman, M.J., Pijanowski, B.C., 2019. Effects of highways on bird distribution and soundscape diversity around Aldo Leopold’s shack in Baraboo, Wisconsin, USA. Landscape and urban planning 192, 103666. Grinfeder, E., Haupert, S., Ducrettet, M., Barlet, J., Reynet, M.-P., Sèbe, F., Sueur, J., 2022. Soundscape dynamics of a cold protected forest: dominance of aircraft noise. Landscape ecology 37, 567-582. Hagens, S.V., Rendall, A.R., Whisson, D.A., 2018. Passive acoustic surveys for predicting species' distributions: Optimising detection probability. PloS one 13, e0199396-e0199396. Halfwerk, W., S. Bot, J. Buikx, M. Van Der Velde, J. Komdeur, C. Ten Cate and H. Slabbekoorn, 2011. Low-frequency songs lose their potency in noisy urban conditions. Proceedings of the National Academy of Sciences of the United States of America108(35):14549-14554. Hastie, T., Tibshirani, R., 1990. Generalized additive models / T.J. Hastie, R.J. Tibshirani. Chapman and Hall, London ;. Herbst, C.T., Stoeger, A.S., Frey, R., Lohscheller, J., Titze, I.R., Gumpenberger, M., Fitch, W.T., 2012. How Low Can You Go? Physical Production Mechanism of Elephant Infrasonic Vocalizations. Science 337, 595-599. Herrera-Montes, M.I., 2020. Protected Area Zoning as a Strategy to Preserve Natural Soundscapes, Reduce Anthropogenic Noise Intrusion, and Conserve Biodiversity. Tropical conservation science 11, 194008291880434. Jain, A.K., 2010. Data clustering: 50 years beyond K-means. Pattern Recognition Letters 31, 651-666. Kalan, A.K., Mundry, R., Wagner, O.J.J., Heinicke, S., Boesch, C., Kühl, H.S., 2015. Towards the automated detection and occupancy estimation of primates using passive acoustic monitoring. Ecological Indicators 54, 217-226. Kasten, E.P., Gage, S.H., Fox, J., Joo, W., 2012. The remote environmental assessment laboratory's acoustic library: An archive for studying soundscape ecology. Ecological Informatics 12, 50-67. Kleist, N.J., Guralnick, R.P., Cruz, A., Francis, C.D., 2017. Sound settlement: noise surpasses land cover in explaining breeding habitat selection of secondary cavity-nesting birds. Ecological applications 27, 260-273. Krause, B., 1987. Bioacoustics: Habitat Ambience & Ecological Balance. Whole Earth Review No 57. Krause, B., 1993. The Niche Hypothesis: A virtual symphony of animal sounds, the origins of musical expression and the health of habitats. Soundscape Newsletter (World Forum for Acoustic Ecology). Krause, B., Gage, S.H., Joo, W., 2011. Measuring and interpreting the temporal variability in the soundscape at four places in Sequoia National Park. Landscape Ecology 26, 1247. Lehmann, G., Frommolt, K.-H., Lehmann, A., Riede, K., 2014. Baseline data for automated acoustic monitoring of Orthoptera in a Mediterranean landscape, the Hymettos, Greece. Journal of Insect Conservation 18. Liao, C.-C., Shieh, B.-S., Chen, C.-C., 2018. Air Temperature Influenced the Vocal Activity of Birds in a Subtropical Forest in Southern Taiwan. Taiwan Journal of Forest Science 33:291-304. Lin, T.-H., Akamatsu, T., Sinniger, F., Harii, S., 2021. Exploring coral reef biodiversity via underwater soundscapes. Biological Conservation 253, 108901. Lin, T.-H., Fang, S.-H., Tsao, Y., 2017. Improving biodiversity assessment via unsupervised separation of biological sounds from long-duration recordings. Scientific Reports 7, 4547. Lin, T.-H., Tsao, Y., 2020. Source separation in ecoacoustics: a roadmap towards versatile soundscape information retrieval. Remote Sensing in Ecology and Conservation 6, 236-247. Lin, T.-H., 2018. Demonstration of soundscape separation by using the Soundscape_ Viewer [Source Code]. https://codeocean.com/capsule/7292152/tree Lowry, H., A. Lill and B. B. M. Wong, 2012. How noisy does a noisy miner have to be? Amplitude adjustments of alarm calls in an avian urban 'adapter'. PLoS ONE7(1). McGregor, P.K., Horn, A.G., Leonard, M.L., Thomsen, F., 2013. Anthropogenic Noise and Conservation. In: Brumm, H. (Ed.), Animal Communication and Noise. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 409-444. Merchant, N.D., Fristrup, K.M., Johnson, M.P., Tyack, P.L., Witt, M.J., Blondel, P., Parks, S.E., Hodgson, D., 2015. Measuring acoustic habitats. Methods in ecology and evolution 6, 257-265. Metcalf, O.C., Barlow, J., Marsden, S., Gomes de Moura, N., Berenguer, E., Ferreira, J., Lees, A.C., Pettorelli, N., Astaras, C., 2022. Optimizing tropical forest bird surveys using passive acoustic monitoring and high temporal resolution sampling. Remote sensing in ecology and conservation 8, 45-56. Michener, W.K., Baerwald, T.J., Firth, P., Palmer, M.A., Rosenberger, J.L., Sandlin, E.A., Zimmerman, H., 2001. Defining and Unraveling Biocomplexity. BioScience 51, 1018-1023. Morley, E.L., Jones, G., Radford, A.N., 2014. The importance of invertebrates when considering the impacts of anthropogenic noise. Proceedings of the Royal Society. B, Biological sciences 281, 20132683. Newport, J., Shorthouse, D.J., Manning, A.D., 2014. The effects of light and noise from urban development on biodiversity: Implications for protected areas in Australia. Ecological management & restoration 15, 204-214. O’Connell-Rodwell, C.E., 2007. Keeping an “Ear” to the Ground: Seismic Communication in Elephants. Physiology 22, 287-294. Pieretti, N., Farina, A., Morri, D., 2011. A new methodology to infer the singing activity of an avian community: The Acoustic Complexity Index (ACI). Ecological Indicators 11, 868-873. Pijanowski, B.C., Farina, A., Gage, S.H., Dumyahn, S.L., Krause, B.L., 2011a. What is soundscape ecology? An introduction and overview of an emerging new science. Landscape Ecology 26, 1213-1232. Pijanowski, B.C., Villanueva-Rivera, L.J., Dumyahn, S.L., Farina, A., Krause, B.L., Napoletano, B.M., Gage, S.H., Pieretti, N., 2011b. Soundscape Ecology: The Science of Sound in the Landscape. BioScience 61, 203-216. Pollack, G.S., Mason, A.C., Popper, A.N., Fay, R.R., 2016. Insect hearing / edited by Gerald S. Pollack, Andrew C. Mason, Arthur N. Popper, Richard R. Fay. Springer International Publishing, Cham. Radford, A., Kerridge, E., Simpson, S., 2014. Acoustic communication in a noisy world: Can fish compete with anthropogenic noise? Behavioral Ecology 25, 1022-1030. Rodriguez, A., Gasc, A., Pavoine, S., Grandcolas, P., Gaucher, P., Sueur, J., 2014. Temporal and spatial variability of animal sound within a neotropical forest. Ecological informatics 21, 133-143. Romer, H., Lewald, J., 1992. High-frequency sound transmission in natural habitats: implications for the evolution of insect acoustic communication. Behavioral Ecology and Sociobiology 29, 437-444. Rosa, P., Koper, N., 2022. Impacts of oil well drilling and operating noise on abundance and productivity of grassland songbirds. The Journal of applied ecology 59, 574-584. Ross, S.R.P.J., Friedman, N.R., Dudley, K.L., Yoshimura, M., Yoshida, T., Economo, E.P., 2017. Listening to ecosystems: data-rich acoustic monitoring through landscape-scale sensor networks. Ecological Research 33, 135-147. Scales, J., J. Hyman and M. Hughes, 2011. Behavioral syndromes break down in urban song sparrow populations.Ethology117(10):887-895. Schafer, R.M., 1977. The tuning of the world. A.A. Knopf, New York. Servick, K., 2014. Eavesdropping on Ecosystems. Science (New York, N.Y.) 343, 834-837. Shannon, C. E., 1948. A mathematical theory of communication. Bell System Technical Journal 27: 379–423 and 623–656. Shannon, G., McKenna, M.F., Angeloni, L.M., Crooks, K.R., Fristrup, K.M., Brown, E., Warner, K.A., Nelson, M.D., White, C., Briggs, J., McFarland, S., Wittemyer, G., 2016. A synthesis of two decades of research documenting the effects of noise on wildlife. Biological Reviews 91, 982-1005. Slabbekoorn, H. and A. den Boer-Visser, 2006. Cities Change the Songs of Birds. Current Biology16(23):2326-2331. Slabbekoorn, H., 2013. Songs of the city: noise-dependent spectral plasticity in the acoustic phenotype of urban birds. Animal behaviour 85, 1089-1099. Southworth, M., 1969. The Sonic Environment of Cities. Environment and Behavior 1, 49-70. Stanley, J.A., Van Parijs, S.M., Davis, G.E., Sullivan, M., Hatch, L.T., 2021. Monitoring spatial and temporal soundscape features within ecologically significant U.S. National Marine Sanctuaries. Ecological applications 31, e02439-n/a Stowell, D., Sueur, J., 2020. Ecoacoustics: acoustic sensing for biodiversity monitoring at scale. Remote Sensing in Ecology and Conservation 6, 217-219. Stowell, D., Wood, M., Stylianou, Y., Glotin, H., 2016. Bird detection in audio: A survey and a challenge. In, 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1-6. Sueur, J., Farina, A., 2015. Ecoacoustics: the Ecological Investigation and Interpretation of Environmental Sound. Biosemiotics 8, 493-502. Sueur, J., Farina, A., Gasc, A., Pieretti, N., Pavoine, S., 2014. Acoustic Indices for Biodiversity Assessment and Landscape Investigation. Acta Acustica united with Acustica 100, 772-781. Sueur, J., Pavoine, S., Hamerlynck, O., Duvail, S., 2008. Rapid acoustic survey for biodiversity appraisal. PLoS One 3, e4065. Sugai, L.S.M., Silva, T.S.F., Ribeiro, J.W., Llusia, D., 2019. Terrestrial Passive Acoustic Monitoring: Review and Perspectives. BioScience 69, 15-25. Szymański, P., Olszowiak, K., Wheeldon, A., Budka, M., Osiejuk, T.S., 2021. Passive acoustic monitoring gives new insight into year-round duetting behaviour of a tropical songbird. Ecological Indicators 122, 107271. Tchernichovski, O., Nottebohm, F., Ho, C.E., Pesaran, B., Mitra, P.P., 2000. A procedure for an automated measurement of song similarity. Animal Behaviour 59, 1167-1176. Truax B., 1999. Handbook of Acoustic Ecology. 2nd ed. (CD-ROM). Cambridge Street. Tucker, D., Gage, S.H., Williamson, I., Fuller, S., 2014. Linking ecological condition and the soundscape in fragmented Australian forests. Landscape ecology 29, 745-758. Van Renterghem, T., Vanhecke, K., Filipan, K., Sun, K., De Pessemier, T., De Coensel, B., Joseph, W., Botteldooren, D., 2020. Interactive soundscape augmentation by natural sounds in a noise polluted urban park. Landscape and urban planning 194, 103705. Vieira, M., Fonseca, P.J., Amorim, M.C.P., 2021. Fish sounds and boat noise are prominent soundscape contributors in an urban European estuary. Marine pollution bulletin 172, 112845-112845. Villanueva-Rivera, L.J., Pijanowski, B.C., Doucette, J., Pekin, B., 2011. A primer of acoustic analysis for landscape ecologists. Landscape Ecology 26, 1233-1246. Watts, R.D., Compton, R.W., McCammon, J.H., Rich, C.L., Wright, S.M., Owens, T., Ouren, D.S., 2007. Roadless Space of the Conterminous United States. Science 316, 736-738. Williams-Guillén, K., Perfecto, I., 2011. Ensemble Composition and Activity Levels of Insectivorous Bats in Response to Management Intensification in Coffee Agroforestry Systems. PLOS ONE 6, e16502. Wood, S.N., Pya, N., Säfken, B., 2016. Smoothing Parameter and Model Selection for General Smooth Models. Journal of the American Statistical Association 111, 1548-1563. Wrege, P.H., Rowland, E.D., Keen, S., Shiu, Y., 2017. Acoustic monitoring for conservation in tropical forests: examples from forest elephants. Methods in Ecology and Evolution 8, 1292-1301. 王亞男、林麗貞、張倍誠、黃憶汝、王介鼎 (2011)溪頭自然教育園區經營管理及遊客人數之初探。臺大實驗林研究報告 25(3):181-1911。 王亞男、林麗貞、張倍誠、李冠賢、余家斌 (2014)溪頭自然教育園區社會心理承載量調查。國立臺灣大學生物資源暨農學院實驗林研究報告 28:31-44. 王亞男、蔡明哲、江博能、洪志遠、賴彥任、張振生、魏聰輝、衛強、余瑞珠、鄭景鵬 (2012)溪頭地區二氧化碳通量長期生態監測試驗地人工林林分構成、林下植物組成之特徵。國立臺灣大學生物資源暨農學院實驗林研究報告 26:225-239. 王豫煌、林誠謙、嚴漢偉、林子皓、陸聲山、曹昱、端木茂甯、黃俊嘉、莊庭瑞(2019)亞洲聲景長期監測網。林業研究專訊 26:26-30。 石佳蓉、劉則言、邱祈榮、吳孟玲 (2017)森林療癒基地的環境評估。林業研究專訊 24:58-63。 李培芬、吳采諭、柯智仁 (2008)以鳥類作為生態指標—鳥類監測計畫簡介。全球變遷通訊雜誌 60:25-35。 李佳紜、張博翔、陳冠伃、端木茂甯 (2019)聽見鳥類物種多樣性-聲景研究的潛力與想像。林業研究專訊 26:22-25。 余家斌、袁孝維、蔡明哲、邱祈榮 (2015)森林遊憩與健康。中華林學季刊 48:173-184。 林文和 (2001)玉山國家公園遊客人數及遊憩活動對設施承載量之分析。應用倫理研究通訊20:51-55。 林曜松、周蓮香 (1990)溪頭森林遊樂區動物資源調查。臺大實驗林林業叢刊第66號。 吳采諭 (2014)國立臺灣大學實驗林管理處轄區鳥類資源研究概況及未來展望。臺灣大學生物資源暨農學院實驗林研究報告 28(4):279-294。 洪志遠、李佳如、蔡明哲、莊閔傑 (2017)遊客對溪頭自然教育園區內服務品質及硬體設施滿意度之評估。國立臺灣大學生物資源暨農學院實驗林研究報告 31:189-204。 洪崇航、逄廣華、鄭凱中、袁孝維、范中衍、盧道杰 (2011)溪頭地區遊客人數對鳥類群聚之影響。中華林學季刊 44(3):319-328。 洪崇航、楊明淵、蔡佩妤、逢廣華、盧道杰、范中衍、袁孝維 (2009)溪頭地區不同年間鳥類群聚變化。臺灣大學生物資源暨農學院實驗林研究報告 23(2):175-188。 袁孝維 (2002)溪頭鳳凰山森林生態系經營區鳥類相監測。中華林學季刊 35(2):201-211。 張振生、王亞男、賴彥任、梁治文、許炳修、魏聰輝 (2008)臺大實驗林溪頭營林區夏季降雨之長期趨勢。國立臺灣大學生物資源暨農學院實驗林研究報告 22:9-19。 陳陽發、陳姿伶、楊平世 (2014)氣候變遷對昆蟲的影響。國立臺灣大學生物資源暨農學院實驗林研究報告 28:195-209。 國立臺灣大學生物資源暨農學院實驗林管理處 (2018)國立臺灣大學生物資源暨農學院實驗林管理處簡介。教育推廣書刊第88號。 楊育昌、何健鎔、何東輯、黃朝卿、張仕緯、林斯正、劉敏慧、程忠智、胡景瀚 (2011)特有生物研究保育中心低海拔試驗站長期生態監測之研究:野生動物普查與氣象因子監測。國立臺灣大學生物資源暨農學院實驗林研究報告 25:1-23。 楊懿如、李鵬翔 (2019)台灣蛙類與蝌蚪圖鑑。臺北市:貓頭鷹出版:家庭傳媒城邦分公司發行。 楊懿如 (2018) 台灣的蛙類與環境之關係。臺中區農業改良場特刊 155-163。 趙芝良、陳瑋苓、李柏宏、董景生 (2021)社區參與式森林療癒:解析花蓮大農大富平地森林園區之療癒活動規劃架構。林業研究季刊 43:65-80。 劉威伶、余瑞珠、王亞男、鄭景鵬、陳秋萍、鄭智馨 (2018)溪頭自然教育園區人工林枯落物之時間與空間變異:季節與植生種類的差異。中華林學季刊 51(3):231-250。 劉儒淵 (1999)溪頭地區生物資源的研究概況、干擾及經營策略。國立臺灣大學農學院實驗林研究報告 13(2):101-117。 鄭智馨、洪志祐、黃于軒、李俊佑、陳秋萍、白創文 (2014)溪頭台灣杉人工林之林分特性與發展。中華林學季刊 47(2):155-168。 賴彥任 (2021)利用CMIP6資料評估氣候變遷對溪頭鳳凰山闊葉樹保育區氣候分類的影響。國立臺灣大學生物資源暨農學院實驗林研究報告 35:171-186。 鍾年鈞 (2000)臺大實驗林的自然教育功能-以溪頭森林遊樂區為例。博物館學季刊 14:47-55。 謝欣怡、袁孝維、王力平、丁宗蘇 (2006)台灣中部溪頭地區天然林與人工林內之陸域脊椎動物多樣性。中華林學季刊 39(4):421-436。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85149 | - |
| dc.description.abstract | 聲景生態學研究於近年蓬勃發展,逐漸成為評估生態變動、環境衝擊的監測工具之一。隨著遊憩需求的提高,溪頭自然教育園區已成為國內最熱門的森林遊憩場域,平均每年約有180萬遊憩人次。過去研究指出龐大的遊客量對於當地的生物多樣性可能產生衝擊。過往由於受限於人力、器材與時間等諸多因素之關係,多無法進行長期且全面的監測評估。為能全面且深入地探討遊憩壓力對於生物聲音多樣性組成之影響,本研究採用長期錄音的方式,深入探討溪頭自然教育園區內遊客壓力與生物聲景之相關性。 本研究採用被動式聲學監測工具,以排程錄音機SM3、SM4錄製3處遊客活動區域熱點及2處人煙罕至地點之聲音資料後,將原始錄音資料以非監督式聲源分離方法分為非生物音及生物音兩類,並以聚類分析計算生物聲音多樣性指數,再以ANOVA及廣義可加性模型分析時空變化趨勢。 研究結果共包含以下五點:(1)本研究的所有樣點,均存在日夜及季節差異,且生物聲音集中於春夏兩季。日間生物週期性聲音主要由鳥類繁殖季合唱組成,夜間主要由昆蟲合唱組成。偶發性聲音(例如:鳥類警戒叫聲、赤腹松鼠等哺乳類動物鳴叫)則主要集中於日間。(2)遊憩壓力較高區域的生物發聲活動較少。(3)新冠疫情三級警戒封園期間,生物發聲活動大致高於未封園期間(包含封園前後1個月,及涵蓋秋冬的全年資料)。(4)生物發聲活動與氣溫呈正相關。(5)非遊客活動區域的生物聲音與遊客人數呈負相關,但遊客活動區域內的生物發聲活動,未必隨遊客人次增加而下降。 基於本研究的分析結果,遊憩壓力與生物發聲活動之間確實存在著顯著的負相關性。然而部份遊客活動區域的生物發聲活動卻未必因遊客人次增加而減少,此結果可能源自於邊緣效應,及部分物種已適應人為干擾等因素所致。目前,本研究尚未針對個別物種對遊憩壓力的實際反應進行分析。未來結合更深入的聲源辨識與不同動物對遊憩壓力的個別適應行為研究,將是必要之趨勢。 | zh_TW |
| dc.description.abstract | In the recent decade, the research of soundscape ecology was booming and becoming a powerful tool for environmental impact monitoring. Because the necessity for leisure and recreation enhanced, the Xitou nature education area became the most popular forest recreation area where attracting 1.8 million tourists per year. Many studies indicate that high tourists number might impact local biodiversity. Because of the resource limit (e. g. investigator, tools, and time et al.), the long time and monitoring broadly study are still lacking. To clarify the impact of biophony by tourist noise in Xitou. The present study used a long-time continuous sound record method to reveal the correlation between tourist pressure and biophony. We use passive acoustic monitoring (PAM) tools (e. g. SM3 and SM4 recorders ) to record the sounds of three touristy and two peaceful sites. The original data were separated into non-biological and biological two types by an unsupervised classification method. We use K-means clustering to calculate acoustic diversity and statistics by ANOVA and generalized additive model (GAM) methods. The analysis results include the following five points: 1. All sites in the present study have diel and seasonal differences, and creature sounds are concentrated in spring and summer. The day periodic creature sounds are composed of birds' breeding season choruses, but insect choruses at night. The transient sounds are concentrated during the daytime (e. g. bird alert calls, red-bellied squirrels, and other mammals' calls). 2. The areas with higher recreational pressure have fewer creature sound activities. 3. During the period of the park closure under Level 3 epidemic alert, the creature sound activity is generally higher than the park is not closed (including one month before and after the closure of the park and the whole year covering autumn and winter). 4. There is a positive correlation between creature sound activity and air temperature. 5. The creature sound in the non-recreational area is negatively correlated with the tourist number but may not necessarily decrease when the tourist number increases in the recreational area. Based on the analysis results. There is a significant negative correlation between recreational stress and creature sound activity. However, the creature sound activities in some recreational areas may not decrease when the tourist number increases. It may be due to the edge effect, or some species have adapted to human disturbance. Currently, the present study has not analyzed the responses of each species to recreational stress. In the future, it will be a necessary trend to combine advanced sound source identification and adaptive behavior studies of different animals when under recreational stress. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:46:39Z (GMT). No. of bitstreams: 1 U0001-0808202221365100.pdf: 13904311 bytes, checksum: b56e985cdb7708f2a658e485610920bf (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 謝辭 i 摘要 ii ABSTRACT iii 圖目錄 vi 表目錄 viii 第壹章、前言 1 第貳章、材料與方法 11 第一節、研究地點 11 第二節、樣點選取 14 第三節、錄音設備 16 第四節、聲景分析 18 第參章、研究結果 28 第一節、錄音資料可視化、聲源分離及聚類分析結果 28 第二節、2020年7月至2021年10月間錄音分析結果 32 第三節、COVID-19封園期間生物發聲活動分析 37 第四節、建立生物聲音多樣性的廣義可加性模型 42 第肆章、討論 45 第一節、溪頭自然教育園區聲景物候變化 45 第二節、遊憩壓力對聲景的影響 48 第三節、封園期間差異 50 第四節、氣溫、遊客入園人次、雨量與生物發聲活動關係 52 第五節、本次研究限制與挑戰 55 第六節、未來展望 57 第伍章、結論 59 第陸章、參考文獻 60 附錄 115 | |
| dc.language.iso | zh-TW | |
| dc.subject | 遊憩壓力 | zh_TW |
| dc.subject | 非監督式聲源分離 | zh_TW |
| dc.subject | 聲音多樣性指數 | zh_TW |
| dc.subject | 廣義可加性模型 | zh_TW |
| dc.subject | 被動式聲學監測 | zh_TW |
| dc.subject | 排程錄音 | zh_TW |
| dc.subject | programmable recording | en |
| dc.subject | passive acoustic monitoring | en |
| dc.subject | blind source separation | en |
| dc.subject | recreational pressure | en |
| dc.subject | acoustic diversity | en |
| dc.subject | generalized additive models | en |
| dc.title | 森林聲景在遊憩壓力下之動態變化—以溪頭自然教育園區為例 | zh_TW |
| dc.title | Dynamics of Forest Soundscape under Recreational Pressure - A Case Study in Xitou Nature Education Area | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林子皓(Tzu-Hao Lin) | |
| dc.contributor.oralexamcommittee | 丁宗蘇(Tzung-Su Ding),端木茂甯(Mao-Ning Tuanmu) | |
| dc.subject.keyword | 被動式聲學監測,非監督式聲源分離,遊憩壓力,聲音多樣性指數,廣義可加性模型,排程錄音, | zh_TW |
| dc.subject.keyword | passive acoustic monitoring,blind source separation,recreational pressure,acoustic diversity,generalized additive models,programmable recording, | en |
| dc.relation.page | 117 | |
| dc.identifier.doi | 10.6342/NTU202202169 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-10 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-18 | - |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0808202221365100.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 13.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
