Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 食品安全與健康研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85134
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧冠宏(Kuan-Hung Lu)
dc.contributor.authorTzu-Ping Kaoen
dc.contributor.author高子評zh_TW
dc.date.accessioned2023-03-19T22:45:46Z-
dc.date.copyright2022-10-03
dc.date.issued2022
dc.date.submitted2022-08-11
dc.identifier.citationAhmed, O. B., Asghar, A. H., & Elhassan, M. M. (2014). Comparison of three DNA extraction methods for polymerase chain reaction (PCR) analysis of bacterial genomic DNA. African Journal of Microbiology Research, 8(6), 598-602. https://doi.org/10.5897/AJMR2013.6459 Allocati, N., Masulli, M., Alexeyev, M. F., & Di Ilio, C. (2013, Dec). Escherichia coli in Europe: An Overview. International Journal of Environmental Research and Public Health, 10(12), 6235-6254. https://doi.org/10.3390/ijerph10126235 Awati, R. (2022). Definition extrapolation and interpolation. Retrieved Jul. 31, 2022 from https://www.techtarget.com/whatis/definition/extrapolation-and-interpolation Baranyi, J., & Roberts, T. A. (1995, Jul). Mathematics of predictive food microbiology. International Journal of Food Microbiology, 26(2), 199-218. https://doi.org/10.1016/0168-1605(94)00121-l Baranyi, J., & Tamplin, M. L. (2004). ComBase: a common database on microbial responses to food environments. Journal of Food Protection, 67(9), 1967-1971. https://doi.org/10.4315/0362-028x-67.9.1967. Basu, S., Mukherjee, S. K., Hazra, A., & Mukherjee, M. (2013, Dec). Molecular characterization of uropathogenic Escherichia coli: nalidixic acid and ciprofloxacin resistance, virulent factors and phylogenetic background. Journal of Clinical and Diagnostic Research, 7(12), 2727-2731. https://doi.org/10.7860/JCDR/2013/6613.3744 Bertrand, R. L. (2019, Apr 1). Lag phase is a dynamic, organized, adaptive, and evolvable period that prepares bacteria for cell division. Journal of Bacteriology 201(7), 201:e00697-00618. https://doi.org/10.1128/JB.00697-18 Bien, J., Sokolova, O., & Bozko, P. (2012). Role of uropathogenic Escherichia coli virulence factors in development of urinary tract infection and kidney damage. International Journal of Nephrology, 2012, 681473. https://doi.org/10.1155/2012/681473 Boekel, M. A. J. S. v., & Zwietering, M. H. (2007). Experimental design, data processing and model fitting in predictive microbiology. In S. Brul, S. J. C. v. Gerwen, & M. H. Zwietering (Eds.), Modelling Microorganisms in Food (pp. 22-43). Woodhead Publishing. https://doi.org/doi.org/10.1533/9781845692940.1.22 Brons, J. K., Vink, S. N., de Vos, M. G. J., Reuter, S., Dobrindt, U., & van Elsas, J. D. (2020, Feb). Fast identification of Escherichia coli in urinary tract infections using a virulence gene based PCR approach in a novel thermal cycler. Journal of Microbiological Methods, 169. https://doi.org/10.1016/j.mimet.2019.105799. Buchanan, R. L. (1993). Developing and distributing user-friendly application software. Journal of Industrial Microbiology, 12, 251-255. https://doi.org/doi.org/10.1007/BF01584198 Buchanan, R. L., & Whiting, R. C. (1996, Dec). Risk assessment and predictive microbiology. Journal of Food Protection, 59(13), 31-36. https://doi.org/10.4315/0362-028X-59.13.31 Chen, C. M., & Ke, Y. L. (2016, Feb). Predictors for total medical costs for acute hemorrhagic stroke patients transferred to the rehabilitation ward at a regional hospital in Taiwan. Topics in Stroke Rehabilitation, 23(1), 59-66. https://doi.org/10.1179/1945511915Y.0000000006 Chien, S. Y., Sheen, S., Sommers, C. H., & Sheen, L. Y. (2016). Modeling the inactivation of intestinal pathogenic Escherichia coli O157:H7 and uropathogenic E. coli in ground chicken by high pressure processing and thymol. Frontiers in Microbiology, 7, 920. https://doi.org/10.3389/fmicb.2016.00920 Chueh, Y.-N., Su, C.-P., Lin, J.-H., Lin, P.-Y., Lin, C.-W., Wang, J.-T., & Lee, T.-F. (2022). Investigation of The First Indigenous Enterohemorrhagic E. coli Infection, Taiwan, 2019. Retrieved Jul. 31, 2022 from https://www.cdc.gov.tw/En/EpidemicTheme/Detail/dwCswoLnYw874U8oPrVAPA?archiveId=U-IDz8BZb1QSHC6Ux_-QIQ Clermont, O., Bonacorsi, S., & Bingen, E. (2000, Oct). Rapid and simple determination of the Escherichia coli phylogenetic group. Applied and Environmental Microbiology Journal, 66(10), 4555-4558. https://doi.org/10.1128/AEM.66.10.4555-4558.2000 Clermont, O., Christenson, J. K., Denamur, E., & Gordon, D. M. (2013, Feb). The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environmental Microbiology Reports, 5(1), 58-65. https://doi.org/10.1111/1758-2229.12019 EPA, U. S. (2010). Quantitative microbial risk assessment to estimate illness in freshwater impacted by agricultural animal sources of fecal contamination. https://www.epa.gov/sites/default/files/2015-11/documents/quantitiave-microbial-risk-fecal.pdf Eurostat. (2019). Root mean square error. Retrieved Jul. 31, 2022 from https://ec.europa.eu/eurostat/cros/content/root-mean-square-error-rmse_en Fang, T., Gurtler, J. B., & Huang, L. (2012, Sep). Growth kinetics and model comparison of Cronobacter sakazakii in reconstituted powdered infant formula. Journal of Food Science, 77(9), E247-255. https://doi.org/10.1111/j.1750-3841.2012.02873.x Fang, T., Liu, Y., & Huang, L. (2013, May). Growth kinetics of Listeria monocytogenes and spoilage microorganisms in fresh-cut cantaloupe. Food Microbiol, 34(1), 174-181. https://doi.org/10.1016/j.fm.2012.12.005 FAO/WHO. (2004). Risk assessment of Listeria monocytogenes in ready-to-eat foods: technical report (5 ed.) https://apps.who.int/iris/handle/10665/42875 Flores-Mireles, A. L., Walker, J. N., Caparon, M., & Hultgren, S. J. (2015, May). Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nature Reviews Microbiology, 13(5), 269-284. https://doi.org/10.1038/nrmicro3432 Galarz, L. A., Fonseca, G. G., & Prentice, C. (2016, Sep). Predicting bacterial growth in raw, salted, and cooked chicken breast fillets during storage. Food Science and Technology International, 22(6), 461-474. https://doi.org/10.1177/1082013215618519 Gibson, A. M., Bratchell, N., & Roberts, T. A. (1987, Jun). The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry. Journal of Applied Microbiology, 62(6), 479-490. https://doi.org/10.1111/j.1365-2672.1987.tb02680.x Gill, A., & Huszczynski, G. (2016, Jul). Enumeration of Escherichia coli O157:H7 in outbreak-associated beef patties. Journal of Food Protection, 79(7), 1266-1268. https://doi.org/10.4315/0362-028x.Jfp-15-521 Guillier, L., Danan, C., Bergis, H., Delignette-Muller, M. L., Granier, S., Rudelle, S., Beaufort, A., & Brisabois, A. (2013, Sep 16). Use of quantitative microbial risk assessment when investigating foodborne illness outbreaks: the example of a monophasic Salmonella Typhimurium 4,5,12:i:- outbreak implicating beef burgers. International Journal of Food Microbiology, 166(3), 471-478. https://doi.org/10.1016/j.ijfoodmicro.2013.08.006 Hadfield, J. M. (2019). The thermal and physical properties of beef from three USDA-quality grades cooked to multiple degrees of doneness Utah State University]. All Graduate Theses and Dissertations. https://digitalcommons.usu.edu/etd/7566 Huang, L. (2008, Jun). Growth kinetics of Listeria monocytogenes in broth and beef frankfurters--determination of lag phase duration and exponential growth rate under isothermal conditions. Journal of Food Science, 73(5), E235-242. https://doi.org/10.1111/j.1750-3841.2008.00785.x Huang, L. (2013). Introduction to USDA Integrated Pathogen Modeling Program (IPMP) 2013. USDA Agricultural Research Service, Eastern Regional Research Center. https://www.ars.usda.gov/northeast-area/wyndmoor-pa/eastern-regional-research-center/docs/ipmp-2013/ Huang, L. (2014, Feb 3). IPMP 2013--a comprehensive data analysis tool for predictive microbiology. International Journal of Food Microbiology, 171, 100-107. https://doi.org/10.1016/j.ijfoodmicro.2013.11.019 Huang, L. (2017, Dec 4). IPMP Global Fit - A one-step direct data analysis tool for predictive microbiology. International Journal of Food Microbiology, 262, 38-48. https://doi.org/10.1016/j.ijfoodmicro.2017.09.010 Huang, L., Hwang, A., & Phillips, J. (2011a, Oct). Effect of temperature on microbial growth rate-mathematical analysis: the Arrhenius and Eyring-Polanyi connections. Journal of Food Science, 76(8), E553-560. https://doi.org/10.1111/j.1750-3841.2011.02377.x Huang, L., Hwang, C. A., & Phillips, J. (2011b, Oct). Evaluating the effect of temperature on microbial growth rate--the Ratkowsky and a Belehradek-type models. Journal of Food Science, 76(8), M547-557. https://doi.org/10.1111/j.1750-3841.2011.02345.x Huff-Lonergan, E. (2006). Water-holding capacity of fresh meat. Iulietto, M. F., Sechi, P., Borgogni, E., & Cenci-Goga, B. T. (2015). Meat spoilage: a critical review of a neglected alteration due to ropy slime producing bacteria. Italian Journal of Animal Science, 14(3). https://doi.org/doi.org/10.4081/ijas.2015.4011 Jahandeh, N., Ranjbar, R., Behzadi, P., & Behzadi, E. (2015). Uropathogenic Escherichia coli virulence genes: invaluable approaches for designing DNA microarray probes. Cent European J Urol, 68(4), 452-458. https://doi.org/10.5173/ceju.2015.625 Jakobsen, L., Garneau, P., Bruant, G., Harel, J., Olsen, S. S., Porsbo, L. J., Hammerum, A. M., & Frimodt-Moller, N. (2012, Jun). Is Escherichia coli urinary tract infection a zoonosis? Proof of direct link with production animals and meat. European Journal of Clinical Microbiology & Infectious Diseases, 31(6), 1121-1129. https://doi.org/10.1007/s10096-011-1417-5 Jakobsen, L., Hammerum, A. M., & Frimodt-Moller, N. (2010b, Aug). Virulence of Escherichia coli B2 isolates from meat and animals in a murine model of ascending urinary tract infection (UTI): evidence that UTI is a zoonosis. Journal of Clinical Microbiology, 48(8), 2978-2980. https://doi.org/10.1128/JCM.00281-10 Jakobsen, L., Kurbasic, A., Skjot-Rasmussen, L., Ejrnaes, K., Porsbo, L. J., Pedersen, K., Jensen, L. B., Emborg, H. D., & Agerso, Y. (2010a, May). Escherichia coli isolates from broiler chicken meat, broiler chickens, pork, and pigs share phylogroups and antimicrobial resistance with community-dwelling humans and patients with urinary tract infection. Foodborne Pathogens and Disease, 7(5), 537-547. https://doi.org/10.1089/fpd.2009.0409 Jeong, J., Lee, J., Lee, H., Lee, S., Kim, S., Ha, J., Yoon, K. S., & Yoon, Y. (2017, Apr). Quantitative microbial risk assessment for Campylobacter foodborne illness in raw beef offal consumption in South Korea [Article]. Journal of Food Protection, 80(4), 609-618. https://doi.org/10.4315/0362-028x.Jfp-16-159 Johnson, J. R., Brown, J. J., Carlino, U. B., & Russo, T. A. (1998, Apr). Colonization with and acquisition of uropathogenic Escherichia coli as revealed by polymerase chain reaction-based detection. The Journal of Infectious Diseases, 177(4), 1120-1124. https://doi.org/10.1086/517409 Johnson, J. R., & O'Bryan, T. T. (2004, Apr). Detection of the Escherichia coli group 2 polysaccharide capsule synthesis Gene kpsM by a rapid and specific PCR-based assay. Journal of Clinical Microbiology, 42(4), 1773-1776. https://doi.org/10.1128/JCM.42.4.1773-1776.2004 Johnson, J. R., Sannes, M. R., Croy, C., Johnston, B., Clabots, C., Kuskowski, M. A., Bender, J., Smith, K. E., Winokur, P. L., & Belongia, E. A. (2007, Jun). Antimicrobial drug-resistant Escherichia coli from humans and poultry products, Minnesota and Wisconsin, 2002-2004. Emerging Infectious Diseases, 13(6), 838-846. https://doi.org/10.3201/eid1306.061576 Johnson, J. R., & Stell, A. L. (2000, Jan). Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. The Journal of Infectious Diseases, 181(1), 261-272. https://doi.org/10.1086/315217 Kalantar-Neyestanaki, D., Mansouri, S., Kandehkar Ghahraman, M. R., Tabatabaeifar, F., & Hashemizadeh, Z. (2020, Dec). Dissemination of different sequence types lineages harboring bla CTX-M-15 among uropathogenic Escherichia coli in Kerman, Iran. Iranian Journal of Basic Medical Sciences, 23(12), 1551-1557. https://doi.org/10.22038/ijbms.2020.47520.10940 Kot, B. (2019, Dec). Antibiotic resistance among uropathogenic Escherichia coli. Polish Journal of Microbiology, 68(4), 403-415. https://doi.org/10.33073/pjm-2019-048 Kung, C. H., Ku, W. W., Lee, C. H., Fung, C. P., Kuo, S. C., Chen, T. L., & Lee, Y. T. (2015, Apr). Epidemiology and risk factors of community-onset urinary tract infection caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae in a medical center in Taiwan: a prospective cohort study. Journal of Microbiology, Immunology and Infection, 48(2), 168-174. https://doi.org/10.1016/j.jmii.2013.08.006 Lee, Kwon, K. H., Chai, C., & Oh, S. W. (2018, Apr). Growth behavior comparison of Listeria monocytogenes between Type strains and beef isolates in raw beef. Food Science and Biotechnology, 27(2), 599-605. https://doi.org/10.1007/s10068-017-0258-0 Lee, J. H., Subhadra, B., Son, Y. J., Kim, D. H., Park, H. S., Kim, J. M., Koo, S. H., Oh, M. H., Kim, H. J., & Choi, C. H. (2016, Jan). Phylogenetic group distributions, virulence factors and antimicrobial resistance properties of uropathogenic Escherichia coli strains isolated from patients with urinary tract infections in South Korea. Letters in Applied Microbiology, 62(1), 84-90. https://doi.org/10.1111/lam.12517 Lee, S., Lee, H., Lee, J. Y., Skandamis, P., Park, B. Y., Oh, M. H., & Yoon, Y. (2013, Nov). Mathematical models to predict kinetic behavior and growth probabilities of Listeria monocytogenes on pork skin at constant and dynamic temperatures. Journal of Food Protection, 76(11), 1868-1872. https://doi.org/10.4315/0362-028X.JFP-13-197 Li, C., He, L., Hu, Y., Liu, H., Wang, X., Chen, L., & Zeng, X. (2022). Dimensional analysis model predicting the number of food microorganisms. Frontiers in Microbiology, 13, 820539. https://doi.org/10.3389/fmicb.2022.820539 Lien, K. W., Yang, M. X., & Ling, M. P. (2020). Microbial risk assessment of Escherichia coli O157:H7 in beef imported from the United States of America to Taiwan. microorganisms, 8(5), 676. https://doi.org/10.3390/microorganisms8050676 Lin, P. H., Lu, C. F., Chang, F. W., Liu, J. M., Chang, Y. H., Pang, S. T., Wang, H. W., & Hsu, R. J. (2019). The impact of meteorological factors on female urinary tract infections in Taiwan: a population-based study. Journal of Medicine and Health, Vol. 8, No. 2. https://jmh.mohw.gov.tw/public/contents/english/201910040719101%E6%B0%A3%E5%80%99%E8%88%87%E5%A5%B3%E6%80%A7%E6%B3%8C%E5%B0%BF%E9%81%93%E6%84%9F%E6%9F%93%E4%B9%8B%E7%9B%B8%E9%97%9C%E6%80%A7%E7%A0%94%E7%A9%B6.pdf Liu, J. M., Chang, Y. L., Hsu, R. J., Su, H. Y., Teng, S. W., & Chang, F. W. (2017, Aug). The climate impact on female acute pyelonephritis in Taiwan: A population-based study. Taiwanese Journal of Obstetrics & Gynecology, 56(4), 437-441. https://doi.org/10.1016/j.tjog.2016.06.022 Longhi, D. A., Dalcanton, F., Falcao de Aragao, G. M., Carciofi, B. A., & Laurindo, J. B. (2013, Oct 21). Assessing the prediction ability of different mathematical models for the growth of Lactobacillus plantarum under non-isothermal conditions. Journal of Theoretical Biology, 335, 88-96. https://doi.org/10.1016/j.jtbi.2013.06.030 Mahdinia, E., Liu, S., Demirci, A., & Puri, V. M. (2020). Microbial Growth Models. In A. Demirci, H. Feng, & K. Krishnamurthy (Eds.), Food Safety Engineering (pp. 357-398). Manges, A. R., Smith, S. P., Lau, B. J., Nuval, C. J., Eisenberg, J. N., Dietrich, P. S., & Riley, L. W. (2007, Winter). Retail meat consumption and the acquisition of antimicrobial resistant Escherichia coli causing urinary tract infections: a case-control study. Foodborne Pathogens and Disease, 4(4), 419-431. https://doi.org/10.1089/fpd.2007.0026 McMeekin, T., Olley, J., Ratkowsky, D., Corkrey, R., & Ross, T. (2013). Predictive microbiology theory and application: Is it all about rates? Food Control, 29(2), 290-299. https://doi.org/10.1016/j.foodcont.2012.06.001 Medina, M., & Castillo-Pino, E. (2019, Mar). An introduction to the epidemiology and burden of urinary tract infections. Therapeutic Advances in Urology, 11. https://doi.org/10.1177/1756287219832172 MLA. (2020). High value market opportunities in Taiwan. Retrieved Jul. 31, 2022 from https://www.mla.com.au/prices-markets/market-news/2020/high-value-market-opportunities-in-taiwan/# Mohammadi, S., Aliakbarlu, J., Tajik, H., Manafi, L., & Mortazav, N. (2022). Inhibition of E. coli and bio-preservation of ground beef by Lactobacillus, black pepper extract and EDTA. Food Bioscience, 47. https://doi.org/10.1016/j.fbio.2022.101635 Montenegro, M. A., Bittersuermann, D., Timmis, J. K., Aguero, M. E., Cabello, F. C., Sanyal, S. C., & Timmis, K. N. (1985). Trat gene-sequences, serum resistance and pathogenicity-related factors in clinical isolates of Escherichia-Coli and other gram-negative bacteria. Journal of General Microbiology, 131(Jun), 1511-1521. https://doi.org/10.1099/00221287-131-6-1511 Najafi, A., Hasanpour, M., Askary, A., Aziemzadeh, M., & Hashemi, N. (2018, May). Distribution of pathogenicity island markers and virulence factors in new phylogenetic groups of uropathogenic Escherichia coli isolates. Folia Microbiologica, 63(3), 335-343. https://doi.org/10.1007/s12223-017-0570-3 NHSN. (2022). 2022 Healthcare safety betwork patient safety component manual (C. f. D. C. a. Prevention, Ed.) https://www.cdc.gov/nhsn/pdfs/pscmanual/pcsmanual_current.pdf Nordstrom, L., Liu, C. M., & Price, L. B. (2013, Mar 6). Foodborne urinary tract infections: a new paradigm for antimicrobial-resistant foodborne illness. Frontiers in Microbiology, 4. https://doi.org/10.3389/fmicb.2013.00029 Oscar, T. P. (2005, Dec). Development and validation of primary, secondary, and tertiary models for growth of Salmonella Typhimurium on sterile chicken. Journal of Food Protection, 68(12), 2606-2613. https://doi.org/10.4315/0362-028x-68.12.2606 Ovca, A., Skufca, T., & Jevsnik, M. (2021, May). Temperatures and storage conditions in domestic refrigerators - Slovenian scenario. Food Control, 123, 107715. https://doi.org/10.1016/j.foodcont.2020.107715 Pérez-Rodríguez, F., & Valero, A. (2013). Predictive Microbiology in Foods. In Predictive Microbiology in Foods (pp. 1-10). Springer New York. https://doi.org/10.1007/978-1-4614-5520-2_1 Panisello, P. J., & Quantick, P. C. (1998). Application of Food MicroModel predictive software in the development of Hazard Analysis Critical Control Point (HACCP) systems. Food Microbiology, 15(4), 425-439. https://doi.org/10.1006/fmic.1998.0195 Rashki, A., Abdi, H. A., & Shookohi, M. (2017). Prevalence of genes encoding outer membrane virulence factors among fecal Escherichia coli isolates. International Journal of Basic Science in Medicine, 2, 52-57. https://doi.org/10.15171/ijbsm.2017.11 Ratkowsky, D. A., Lowry, R. K., McMeekin, T. A., Stokes, A. N., & Chandler, R. E. (1983, Jun). Model for bacterial culture growth rate throughout the entire biokinetic temperature range. Journal of Bacteriology, 154(3), 1222-1226. https://doi.org/10.1128/jb.154.3.1222-1226.1983 Ristow, L. C., & Welch, R. A. (2016, Mar). Hemolysin of uropathogenic Escherichia coli: A cloak or a dagger? Biochimica et Biophysica Acta, 1858(3), 538-545. https://doi.org/10.1016/j.bbamem.2015.08.015 Rodriguez-Siek, K. E., Giddings, C. W., Doetkott, C., Johnson, T. J., Fakhr, M. K., & Nolan, L. K. (2005, Jun). Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiology (Reading), 151(Pt 6), 2097-2110. https://doi.org/10.1099/mic.0.27499-0 Rolfe, C., & Daryaei, H. (2020). Intrinsic and extrinsic factors affecting microbial growth in food systems. In A. Demirci, H. Feng, & K. Krishnamurthy (Eds.), Food Safety Engineering (pp. 3-24). Ross, T. (1996, Nov). Indices for performance evaluation of predictive models in food microbiology. Journal of Applied Bacteriology, 81(5), 501-508. https://doi.org/10.1111/j.1365-2672.1996.tb03539.x Ross, T., & McMeekin, T. A. (1994, Nov). Predictive microbiology. International Journal of Food Microbiology, 23(3-4), 241-264. https://doi.org/10.1016/0168-1605(94)90155-4 Ross, T., Ratkowsky, D. A., Mellefont, L. A., & McMeekin, T. A. (2003, Jan 26). Modelling the effects of temperature, water activity, pH and lactic acid concentration on the growth rate of Escherichia coli. International Journal of Food Microbiology, 82(1), 33-43. https://doi.org/10.1016/s0168-1605(02)00252-0 Russo, T. A., & Johnson, J. R. (2003, Apr). Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes and Infection, 5(5), 449-456. https://doi.org/10.1016/s1286-4579(03)00049-2 Sabate, M., Moreno, E., Perez, T., Andreu, A., & Prats, G. (2006, Sep). Pathogenicity island markers in commensal and uropathogenic Escherichia coli isolates. Clinical Microbiology and Infection, 12(9), 880-886. https://doi.org/10.1111/j.1469-0691.2006.01461.x Sarowska, J., Futoma-Koloch, B., Jama-Kmiecik, A., Frej-Madrzak, M., Ksiazczyk, M., Bugla-Ploskonska, G., & Choroszy-Krol, I. (2019). Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: recent reports. Gut Pathogens, 11, 10. https://doi.org/10.1186/s13099-019-0290-0 Sheard, P. R., Nute, G. R., & Chappell, A. G. (1998, Jun). The effect of cooking on the chemical composition of meat products with special reference to fat loss. Meat Science, 49(2), 175-191. https://doi.org/10.1016/s0309-1740(97)00137-x Singer, R. S. (2015). Urinary tract infections attributed to diverse ExPEC strains in food animals: evidence and data gaps. Frontiers in Microbiology, 6, 28. https://doi.org/10.3389/fmicb.2015.00028 Sommers, C., Huang, C.-Y., Sheen, L.-Y., Sheen, S., & Huang, L. (2018). Growth modeling of uropathogenic Escherichia coli in ground chicken meat. Food Control, 86, 397-402. https://doi.org/10.1016/j.foodcont.2017.12.007 Tamplin, M. L. (2002, Oct). Growth of Escherichia coli O157:H7 in raw ground beef stored at 10℃ and the influence of competitive bacterial flora, strain variation, and fat level. Journal of Food Protection, 65(10), 1535-1540. https://doi.org/10.4315/0362-028x-65.10.1535 te Giffel, M. C., & Zwietering, M. H. (1999, Feb 2). Validation of predictive models describing the growth of Listeria monocytogenes. International Journal of Food Microbiology, 46(2), 135-149. https://doi.org/10.1016/s0168-1605(98)00189-5 Terlizzi, M. E., Gribaudo, G., & Maffei, M. E. (2017). Uropathogenic Escherichia coli (UPEC) infections: virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Frontiers in Microbiology, 8, 1566. https://doi.org/10.3389/fmicb.2017.01566 Tesson, V., Federighi, M., Cummins, E., de Oliveira Mota, J., Guillou, S., & Boue, G. (2020, Jan 21). A systematic review of beef meat quantitative microbial risk assessment models. International Journal of Environmental Research and Public Health, 17(3). https://doi.org/10.3390/ijerph17030688 USFDA. (2012). Retail meat report (2010) (F. a. D. Administration, Ed.) https://www.fda.gov/media/82822/download Vincent, C., Boerlin, P., Daignault, D., Dozois, C. M., Dutil, L., Galanakis, C., Reid-Smith, R. J., Tellier, P. P., Tellis, P. A., Ziebell, K., Manges, A. R., Olsen, K. E., Aarestrup, F. M., Frimodt-Moller, N., & Hammerum, A. M. (2010, Jan). Food reservoir for Escherichia coli causing urinary tract infections. Emerging Infectious Diseases, 16(1), 88-95. https://doi.org/10.3201/eid1601.091118 Wu, C. T., Lee, H. Y., Chen, C. L., Tuan, P. L., & Chiu, C. H. (2016, Apr). High prevalence and antimicrobial resistance of urinary tract infection isolates in febrile young children without localizing signs in Taiwan. Journal of Microbiology, Immunology and Infection, 49(2), 243-248. https://doi.org/10.1016/j.jmii.2015.05.016 Wu, J. H., Chiou, Y. H., Chang, J. T., Wang, H. P., Chen, Y. Y., & Hsieh, K. S. (2012, Oct). Urinary tract infection in infants: a single-center clinical analysis in southern Taiwan. Pediatrics & Neonatology, 53(5), 283-288. https://doi.org/10.1016/j.pedneo.2012.08.003 Yeruham, I., Elad, D., Avidar, Y., & Goshen, T. (2006, Jan). A herd level analysis of urinary tract infection in dairy cattle. The Veterinary Journal, 171(1), 172-176. https://doi.org/10.1016/j.tvjl.2004.04.005 Zanoni, B., Garzaroli, C., Anselmi, S., & Rondinini, G. (1993, Oct). Modeling the growth of Enterococcus faecium in bologna sausage. Applied and Environmental Microbiology Journal, 59(10), 3411-3417. https://doi.org/10.1128/aem.59.10.3411-3417.1993 Zeng, L., Ruan, M., Liu, J., Wilde, P., Naumova, E. N., Mozaffarian, D., & Zhang, F. F. (2019, Jul). Trends in processed meat, unprocessed red meat, poultry, and fish consumption in the United States, 1999-2016. Journal of the Academy of Nutrition and Dietetics, 119(7), 1085-1098 e1012. https://doi.org/10.1016/j.jand.2019.04.004 Zhang, L. X., & Foxman, B. (2003, Jan). Molecular epidemiology of Escherichia coli mediated urinary tract infections. Frontiers in Bioscience-Landmark, 8, E235-E244. https://doi.org/10.2741/1007 Zwietering, M. H., de Koos, J. T., Hasenack, B. E., de Witt, J. C., & van't Riet, K. (1991, Apr). Modeling of bacterial growth as a function of temperature. Applied and Environmental Microbiology Journal, 57(4), 1094-1101. https://doi.org/10.1128/aem.57.4.1094-1101.1991 Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & van 't Riet, K. (1990, Jun). Modeling of the bacterial growth curve. Applied and Environmental Microbiology Journal, 56(6), 1875-1881. https://doi.org/10.1128/aem.56.6.1875-1881.1990
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85134-
dc.description.abstract根據流行病學研究統計,臺灣女性得到泌尿道感染 (UTIs) 的發生率為每十萬人口250.94人,而全世界每年則有1.3-1.75億的人受到感染,其中有65-75%的感染源來自於泌尿道致病性大腸桿菌 (UPEC),由於復發率高且具有抗藥性,進而造成嚴重的社會負擔,於美國一年的經濟損失將近35億美元。許多證據顯示UPEC是一種新興的食源性病原菌,而肉品是UPEC最有可能的貯存庫,其中牛肉為了保持口感通常不會完全煮熟,甚至有許多餐廳提供生牛肉料理,若在食物鏈中受到污染可能會使消費者暴露於風險中。本實驗的目的即為研究臺灣市場中牛肉產品受到UPEC感染的盛行率,並進一步建立數學模型預測UPEC在牛肉中的生長行為。從傳統市場及超市的牛肉產品中分離出E. coli並使用聚合酶鏈反應 (PCR) 進行UPEC鑑定、演化型分類及毒力因子檢測。生牛肉中的帶有UPEC的肉品盛行率為25%,而由肉品所單離的大腸桿菌中,UPEC菌株之盛行率為13.9%,且即食牛肉也檢測出UPEC的存在。本實驗分別接種2-3 log CFU/g的UPEC於生牛肩肉與熟牛肩肉上,在4、10、20、25、35℃的等溫條件下建立預測模型,結果顯示使用No lag phase以及Huang square root model較佳。進一步使用生牛肩肉、熟牛肩肉、生牛絞肉、熟牛絞肉進行30℃的獨立實驗以驗證模型可靠度,在相對應的熟度與牛肩肉下能夠可靠的進行預測 (RMSE, 0.37-0.45 log CFU/g; adjusted R2, 0.96-0.97; pRE, 0.88);當使用脂肪含量不同的牛絞肉時預測誤差會增加 (RMSE, 0.98-1.37 log CFU/g; adjusted R2, 0.93-0.96; pRE, 0.60-0.80);若模型與基質生熟不同則無法可靠地進行預測 (RMSE, 1.35-1.83 log CFU/g; adjusted R2, 0.43-0.86; pRE, 0.38-0.63)。本實驗建立的模型可應用於牛肉產品的品質管控,並提供量化數據以建立定量微生物風險評估,促進食品安全。zh_TW
dc.description.abstractAccording to epidemiological studies, the incidence rate of urinary tract infections (UTIs) in females in Taiwan is 250.94 per 100,000 people, while 130-175 million people are infected in the world each year. Uropathogenic Escherichia coli (UPEC) accounts for 65-75% of UTIs, causing a huge burden due to high recurrence rates and antibiotic resistance and costing nearly 3.5 billion a year in the United States. Much evidence suggests that UPEC is an emerging foodborne pathogen, and meats are the most likely reservoirs. Since the beef is preferred not fully cooked to keep the tenderness for taste, many restaurants even serve raw beef dishes. Contamination of raw beef with UPEC in the food chain may expose consumers to the risk of foodborne UTIs. The first objective of this study was to investigate the prevalence of UPEC in beef products in Taiwan. The secondary objective was to establish a mathematical model to predict the growth behavior of UPEC in beef. E. coli was isolated from beef products sampling from traditional markets and supermarkets. The isolates were analyzed by the polymerase chain reaction (PCR) method for UPEC identification, phylogroup classification, and virulence genotyping. The prevalence of UPEC-contaminated raw beef meats was 25%, and UPEC in E. coli isolates was 13.9%. More importantly, UPEC had also been detected in ready-to-eat beef. To obtain the growth curves, UPEC was inoculated on raw or cooked beef chuck with 2-3 log CFU/g initial concentration and stored under the isothermal conditions at 4, 10, 20, 25, and 35 ℃. The growth curves were fitted with primary and secondary models in IPMP2013 to establish the predictive models for the growth of UPEC in raw and cooked beef. The results showed that the combination of the no-lag phase and Huang square root models was better than the others. Further independent experiments at 30 °C were conducted using raw or cooked beef chuck or ground beef to verify the reliability of the developed models. The validation results showed that UPEC growth in raw and cooked chuck could be reliably predicted by the raw (RMSE, 0.37 log CFU/g; adjusted R2, 0.97; pRE, 0.88) and cooked (RMSE, 0.45 log CFU/g; adjusted R2, 0.96; pRE, 0.88) beef models, respectively. The predictions variations increased when the beef type changed to raw (RMSE, 1.37 log CFU/g; adjusted R2, 0.93; pRE, 0.60) or cooked (RMSE, 0.98 log CFU/g; adjusted R2, 0.96; pRE, 0.80) ground beef. However, the raw beef model did not predict UPEC growth in cooked chuck or ground beef efficiently (RMSE, 1.46–1.76 log CFU/g; adjusted R2, 0.54–0.67; pRE, 0.38–0.60). Similarly, the cooked beef model could not be reliably applied to predicting the growth in raw and raw ground beef (RMSE, 1.35–1.83 log CFU/g; adjusted R2, 0.66–0.86; pRE, 0.60–0.63). The model established in this experiment can be applied to the quality control of beef products and provides quantitative data to build quantitative microbial risk assessment and promote food safety.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:45:46Z (GMT). No. of bitstreams: 1
U0001-1008202213373100.pdf: 3083886 bytes, checksum: 91a8fb4d10465220293cb06d386904ae (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審訂書 i 誌謝 ii 中文摘要 iii Abstract iv CONTENTS vii LIST OF FIGURES x LIST OF TABLES xi List of Abbreviations xiii CHAPTER 1 Introduction 1 CHAPTER 2 Background and Literature Review 5 2.1 Urinary tract infections (UTIs) 5 2.1.1 Introduction 5 2.1.2 Classification of Escherichia coli (E. coli) 6 2.1.3 Foodborne uropathogenic E. coli 8 2.1.4 UPEC identification 10 2.1.5 Phylogenetic typing 12 2.1.6 Virulence factor of UPEC 12 2.2 Microbiological risk of beef 14 2.2.1 Consumption of beef 14 2.2.2 Microbiological outbreaks 15 2.2.3 Risk factors 16 2.3 Predictive microbiology 17 2.3.1 Introduction 17 2.3.2 Primary model 18 2.3.3 Secondary model 20 2.3.4 Tertiary model 22 2.3.5 Validation 25 2.3.6 Application 27 CHAPTER 3 Materials and Methods 29 3.1 Experimental design 29 3.2 Sampling 30 3.3 Physical analysis 31 3.4 Isolation and stock culture 32 3.5 UPEC identification and extraction 32 3.6 Phylogenetic typing and virulence genotyping 34 3.7 Bacterial strain and inoculum preparation 35 3.8 Sample preparation and inoculation 36 3.9 Storage conditions and UPEC enumeration 37 3.10 Growth modeling 37 3.10.1 Primary model 38 3.10.2 Secondary model 39 3.10.3 Model evaluation 41 3.10.4 Validation 42 3.11 Data analysis 44 CHAPTER 4 Results and Discussion 45 4.1 UPEC contamination and prevalence of beef in Taiwan 45 4.1.1 Prevalence and level of E. coli 45 4.1.2 Identification of UPEC 46 4.1.3 Prevalence of phylogroup and virulence factors 47 4.1.4 Physical analysis of beef 48 4.2 Establishment of predictive growth model 49 4.2.1 Primary model 49 4.2.2 Secondary model 51 4.2.3 Validation 52 CHAPTER 5 Conclusion 57 Figures 59 Tables 70 Reference 89 Appendixes 102
dc.language.isoen
dc.subject泌尿道感染zh_TW
dc.subject預測微生物學zh_TW
dc.subject牛肉zh_TW
dc.subject生長模型zh_TW
dc.subject食品安全zh_TW
dc.subject泌尿道致病性大腸桿菌zh_TW
dc.subjecturopathogenic E. colien
dc.subjectgrowth modelsen
dc.subjectfood safetyen
dc.subjecturinary tract infectionsen
dc.subjectpredictive microbiologyen
dc.subjectbeefen
dc.title泌尿道致病性大腸桿菌於臺灣市售牛肉之盛行率及其於生牛肉與熟牛肉之生長預測模型zh_TW
dc.titlePrevalence of uropathogenic Escherichia coli in retail beef and predictive models for the growth in raw and cooked beefen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張靜文(Ching-Wen Chang),林怡君(Yi-Jun Lin),陳鑫昌(Hsin-Chang Chen)
dc.subject.keyword泌尿道致病性大腸桿菌,預測微生物學,牛肉,生長模型,食品安全,泌尿道感染,zh_TW
dc.subject.keyworduropathogenic E. coli,predictive microbiology,beef,growth models,food safety,urinary tract infections,en
dc.relation.page107
dc.identifier.doi10.6342/NTU202202253
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-11
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept食品安全與健康研究所zh_TW
dc.date.embargo-lift2027-08-10-
顯示於系所單位:食品安全與健康研究所

文件中的檔案:
檔案 大小格式 
U0001-1008202213373100.pdf
  未授權公開取用
3.01 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved