請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85133完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 嚴仲陽(Jeffrey J.Y. Yen) | |
| dc.contributor.author | Wei-Ting Liao | en |
| dc.contributor.author | 廖偉廷 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:45:42Z | - |
| dc.date.copyright | 2022-10-03 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-11 | |
| dc.identifier.citation | Abu-Remaileh, M., Wyant, G.A., Kim, C., Laqtom, N.N., Abbasi, M., Chan, S.H., Freinkman, E., and Sabatini, D.M. (2017). Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes. Science 358, 807-813. Alesi, N., Akl, E.W., Khabibullin, D., Liu, H.J., Nidhiry, A.S., Garner, E.R., Filippakis, H., Lam, H.C., Shi, W., Viswanathan, S.R., et al. (2021). TSC2 regulates lysosome biogenesis via a non-canonical RAGC and TFEB-dependent mechanism. Nat Commun 12, 4245. André, F., Ciruelos, E., Rubovszky, G., Campone, M., Loibl, S., Rugo, H.S., Iwata, H., Conte, P., Mayer, I.A., Kaufman, B., et al. (2019). Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. The New England journal of medicine 380, 1929-1940. Angarola B, and SM, F. (2019). Weak membrane interactions allow Rheb to activate mTORC1 signaling without major lysosome enrichment. Mol Biol Cell 30, 11. Aspuria, P.J., and Tamanoi, F. (2004). The Rheb family of GTP-binding proteins. Cellular signalling 16, 1105-1112. Basso AD, M.A., Liu G, et al. (2005). The farnesyl transferase inhibitor (FTI) SCH66336 (lonafarnib) inhibits Rheb farnesylation and mTOR signaling. Role in FTI enhancement of taxane and tamoxifen anti‐tumor activity. J Biol Chem 280, 31101–31108. Burnett, P.E., Barrow, R.K., Cohen, N.A., Snyder, S.H., and Sabatini, D.M. (1998). RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci U S A 95, 1432-1437. Cai, S.L., Tee, A.R., Short, J.D., Bergeron, J.M., Kim, J., Shen, J., Guo, R., Johnson, C.L., Kiguchi, K., and Walker, C.L. (2006). Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J Cell Biol 173, 279-289. Castro, A.F., Rebhun, J.F., Clark, G.J., and Quilliam, L.A. (2003). Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner. J Biol Chem 278, 32493-32496. Castro AF, R.J., Clark GJ, et al. (2003). Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin‐ and farnesylation‐dependent manner. J Biol Chem 278, 32493–32496. Chiang, Y.J., Ho, K.C., Sun, C.T., Chiu, J.J., Lee, F.J., Liao, F., Yang-Yen, H.F., and Yen, J.J. (2013). CBAP functions as a novel component in chemokine-induced ZAP70-mediated T-cell adhesion and migration. PLoS One 8, e61761. Chiang, Y.J., Liao, W.T., Ho, K.C., Wang, S.H., Chen, Y.G., Ho, C.L., Huang, S.F., Shih, L.Y., Yang-Yen, H.F., and Yen, J.J. (2019). CBAP modulates Akt-dependent TSC2 phosphorylation to promote Rheb-mTORC1 signaling and growth of T-cell acute lymphoblastic leukemia. Oncogene 38, 1432-1447. Clark, G.J., Kinch, M.S., Rogers-Graham, K., Sebti, S.M., Hamilton, A.D., and Der, C.J. (1997). The Ras-related protein Rheb is farnesylated and antagonizes Ras signaling and transformation. J Biol Chem 272, 10608-10615. Demetriades, C., Plescher, M., and Teleman, A.A. (2016). Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat Commun 7, 10662. Deng, L., Chen, L., Zhao, L., Xu, Y., Peng, X., Wang, X., Ding, L., Jin, J., Teng, H., Wang, Y., et al. (2019). Ubiquitination of Rheb governs growth factor-induced mTORC1 activation. Cell research 29, 136-150. Dennis, M.D., Coleman, C.S., Berg, A., Jefferson, L.S., and Kimball, S.R. (2014). REDD1 enhances protein phosphatase 2A-mediated dephosphorylation of Akt to repress mTORC1 signaling. Sci Signal 7, ra68. Dere, R., Wilson, P.D., Sandford, R.N., and Walker, C.L. (2010). Carboxy terminal tail of polycystin-1 regulates localization of TSC2 to repress mTOR. PLoS One 5, e9239. Dibble, C.C., Elis, W., Menon, S., Qin, W., Klekota, J., Asara, J.M., Finan, P.M., Kwiatkowski, D.J., Murphy, L.O., and Manning, B.D. (2012). TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 47, 535-546. Fawal M‐A, B.M., Djouder N. (2015). MCRS1 binds and couples Rheb to amino acid‐dependent mTORC1 activation. . Dev Cell 33, 67-81. Fawal, M.A., Brandt, M., and Djouder, N. (2015). MCRS1 binds and couples Rheb to amino acid-dependent mTORC1 activation. Developmental cell 33, 67-81. Fennelly, C., and Amaravadi, R.K. (2017). Lysosomal Biology in Cancer. Methods in molecular biology (Clifton, N.J.) 1594, 293-308. Fitzian, K., Brückner, A., Brohée, L., Zech, R., Antoni, C., Kiontke, S., Gasper, R., Linard Matos, A.L., Beel, S., Wilhelm, S., et al. (2021). TSC1 binding to lysosomal PIPs is required for TSC complex translocation and mTORC1 regulation. Mol Cell 81, 2705-2721.e2708. Gandhi, J.S., Malik, F., Amin, M.B., Argani, P., and Bahrami, A. (2020). MiT family translocation renal cell carcinomas: A 15th anniversary update. Histology and histopathology 35, 125-136. Hannan, K.M., Brandenburger, Y., Jenkins, A., Sharkey, K., Cavanaugh, A., Rothblum, L., Moss, T., Poortinga, G., McArthur, G.A., Pearson, R.B., et al. (2003). mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Mol Cell Biol 23, 8862-8877. Heard, J.J., Fong, V., Bathaie, S.Z., and Tamanoi, F. (2014). Recent progress in the study of the Rheb family GTPases. Cellular signalling 26, 1950-1957. Hemesath, T.J., Steingrímsson, E., McGill, G., Hansen, M.J., Vaught, J., Hodgkinson, C.A., Arnheiter, H., Copeland, N.G., Jenkins, N.A., and Fisher, D.E. (1994). microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev 8, 2770-2780. Hirata, N., Suizu, F., Matsuda-Lennikov, M., Tanaka, T., Edamura, T., Ishigaki, S., Donia, T., Lithanatudom, P., Obuse, C., Iwanaga, T., et al. (2018). Functional characterization of lysosomal interaction of Akt with VRK2. Oncogene 37, 5367-5386. Ho, K.C., Chiang, Y.J., Lai, A.C., Liao, N.S., Chang, Y.J., Yang-Yen, H.F., and Yen, J.J. (2014). CBAP promotes thymocyte negative selection by facilitating T-cell receptor proximal signaling. Cell Death Dis 5, e1518. Hopkins, B.D., Pauli, C., Du, X., Wang, D.G., Li, X., Wu, D., Amadiume, S.C., Goncalves, M.D., Hodakoski, C., Lundquist, M.R., et al. (2018). Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 560, 499-503. Hoxhaj, G., and Manning, B.D. (2020). The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nature reviews. Cancer 20, 74-88. Ilagan, E., and Manning, B.D. (2016). Emerging role of mTOR in the response to cancer therapeutics. Trends in cancer 2, 241-251. Inoki, K., Li, Y., Xu, T., and Guan, K.L. (2003). Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17, 1829-1834. Inoki, K., Li, Y., Zhu, T., Wu, J., and Guan, K.L. (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4, 648-657. JanetYoung, and SuePovey (1998). The genetic basis of tuberous sclerosis. Molecular Medicine Today 4, 6. Janku, F., Yap, T.A., and Meric-Bernstam, F. (2018). Targeting the PI3K pathway in cancer: are we making headway? Nature Reviews Clinical Oncology 15, 273-291. Kao, C.J., Chiang, Y.J., Chen, P.H., Lin, K.R., Hwang, P.I., Yang-Yen, H.F., and Yen, J.J. (2008). CBAP interacts with the un-liganded common beta-subunit of the GM-CSF/IL-3/IL-5 receptor and induces apoptosis via mitochondrial dysfunction. Oncogene 27, 1397-1403. Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T.P., and Guan, K.L. (2008). Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10, 935-945. Kirkegaard, T., and Jäättelä, M. (2009). Lysosomal involvement in cell death and cancer. Biochimica et biophysica acta 1793, 746-754. Lawrence, M.S., Stojanov, P., Mermel, C.H., Robinson, J.T., Garraway, L.A., Golub, T.R., Meyerson, M., Gabriel, S.B., Lander, E.S., and Getz, G. (2014). Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495-501. Li, Y., Inoki, K., and Guan, K.L. (2004). Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity. Mol Cell Biol 24, 7965-7975. Liu, G.Y., and Sabatini, D.M. (2020). mTOR at the nexus of nutrition, growth, ageing and disease. Nature Reviews Molecular Cell Biology 21, 183-203. Long X, L.Y., Ortiz‐Vega S, et al. (2005). Rheb binds and regulates the mTOR kinase. Curr Biol 15, 702-713. Lu, Z.H., Shvartsman, M.B., Lee, A.Y., Shao, J.M., Murray, M.M., Kladney, R.D., Fan, D., Krajewski, S., Chiang, G.G., Mills, G.B., et al. (2010). Mammalian target of rapamycin activator RHEB is frequently overexpressed in human carcinomas and is critical and sufficient for skin epithelial carcinogenesis. Cancer research 70, 3287-3298. Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P., and Pandolfi, P.P. (2005). Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121, 179-193. Mahoney, S.J., Narayan, S., Molz, L., Berstler, L.A., Kang, S.A., Vlasuk, G.P., and Saiah, E. (2018). A small molecule inhibitor of Rheb selectively targets mTORC1 signaling. Nat Commun 9, 548. Manning, B.D., and Cantley, L.C. (2007). AKT/PKB signaling: navigating downstream. Cell 129, 1261-1274. Manning, B.D., and Toker, A. (2017). AKT/PKB Signaling: Navigating the Network. Cell 169, 381-405. Manning, G., Whyte, D.B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science 298, 1912-1934. Martina, J.A., Chen, Y., Gucek, M., and Puertollano, R. (2012). MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8, 903-914. Martina, J.A., Diab, H.I., Lishu, L., Jeong, A.L., Patange, S., Raben, N., and Puertollano, R. (2014). The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci Signal 7, ra9. Mayer, C., Zhao, J., Yuan, X., and Grummt, I. (2004). mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev 18, 423-434. Menon S, D.C., Talbott G, et al. (2014). Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. CELL 156, 711-785. Menon, S., Dibble, C.C., Talbott, G., Hoxhaj, G., Valvezan, A.J., Takahashi, H., Cantley, L.C., and Manning, B.D. (2014). Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156, 771-785. Michels, A.A., Robitaille, A.M., Buczynski-Ruchonnet, D., Hodroj, W., Reina, J.H., Hall, M.N., and Hernandez, N. (2010). mTORC1 directly phosphorylates and regulates human MAF1. Mol Cell Biol 30, 3749-3757. Nissim Hay, and Sonenberg, N. (2004). Upstream and downstream of mTOR. Genes Dev 18, 20. P A Steck, M A Pershouse, S A Jasser, W K Yung, H.L., A H Ligon, L A Langford, M L Baumgard, T Hattier, T Davis, C.F., R Hu, et al. (1997). Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature genetics 15, 7. Palermo, C., and Joyce, J.A. (2008). Cysteine cathepsin proteases as pharmacological targets in cancer. Trends in pharmacological sciences 29, 22-28. Peña-Llopis, S., Vega-Rubin-de-Celis, S., Schwartz, J.C., Wolff, N.C., Tran, T.A., Zou, L., Xie, X.J., Corey, D.R., and Brugarolas, J. (2011). Regulation of TFEB and V-ATPases by mTORC1. The EMBO journal 30, 3242-3258. Potter, C.J., Pedraza, L.G., and Xu, T. (2002). Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 4, 658-665. Prentzell, M.T., Rehbein, U., Cadena Sandoval, M., De Meulemeester, A.S., Baumeister, R., Brohee, L., Berdel, B., Bockwoldt, M., Carroll, B., Chowdhury, S.R., et al. (2021). G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling. Cell 184, 655-674 e627. Puertollano, R., Ferguson, S.M., Brugarolas, J., and Ballabio, A. (2018). The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. The EMBO journal 37. Ramlaul, K., Fu, W., Li, H., de Martin Garrido, N., He, L., Trivedi, M., Cui, W., Aylett, C.H.S., and Wu, G. (2021). Architecture of the Tuberous Sclerosis Protein Complex. J Mol Biol 433, 166743. Roczniak-Ferguson, A., Petit, C.S., Froehlich, F., Qian, S., Ky, J., Angarola, B., Walther, T.C., and Ferguson, S.M. (2012). The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal 5, ra42. Rosset, C., Vairo, F., Bandeira, I.C., Correia, R.L., de Goes, F.V., da Silva, R.T.B., Bueno, L.S.M., de Miranda Gomes, M.C.S., Galvao, H.C.R., Neri, J., et al. (2017). Molecular analysis of TSC1 and TSC2 genes and phenotypic correlations in Brazilian families with tuberous sclerosis. PLoS One 12, e0185713. Ruvinsky, I., Katz, M., Dreazen, A., Gielchinsky, Y., Saada, A., Freedman, N., Mishani, E., Zimmerman, G., Kasir, J., and Meyuhas, O. (2009). Mice deficient in ribosomal protein S6 phosphorylation suffer from muscle weakness that reflects a growth defect and energy deficit. PLoS One 4, e5618. S P Staal, J W Hartley, and W P Rowe (1977). Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma. Proc Natl Acad Sci U S A 74, 3. Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A.L., Nada, S., and Sabatini, D.M. (2010). Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290-303. Sancak Y, B.P.L., Zoncu R, et al. (2010). Ragulator‐Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. CELL 141, 290–303. Sardiello, M., Palmieri, M., di Ronza, A., Medina, D.L., Valenza, M., Gennarino, V.A., Di Malta, C., Donaudy, F., Embrione, V., Polishchuk, R.S., et al. (2009). A gene network regulating lysosomal biogenesis and function. Science 325, 473-477. Saxton, R.A., and Sabatini, D.M. (2017). mTOR Signaling in Growth, Metabolism, and Disease. Cell 168, 960-976. Schöneborn, H., Raudzus, F., Coppey, M., Neumann, S., and Heumann, R. (2018). Perspectives of RAS and RHEB GTPase Signaling Pathways in Regenerating Brain Neurons. Int J Mol Sci 19. Sehgal, S.N., Baker, H., and Vézina, C. (1975). Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. The Journal of antibiotics 28, 727-732. Settembre, C., Zoncu, R., Medina, D.L., Vetrini, F., Erdin, S., Erdin, S., Huynh, T., Ferron, M., Karsenty, G., Vellard, M.C., et al. (2012). A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. The EMBO journal 31, 1095-1108. Straus, W. (1954). Isolation and biochemical properties of droplets from the cells of rat kidney. J Biol Chem 207, 745-755. Tee AR, B.J., Proud CG. (2005). Analysis of mTOR signaling by the small G-proteins, Rheb and RhebL1. FEBS Lett. 579, 4763–4768. Tee, A.R., Manning, B.D., Roux, P.P., Cantley, L.C., and Blenis, J. (2003). Tuberous Sclerosis Complex Gene Products, Tuberin and Hamartin, Control mTOR Signaling by Acting as a GTPase-Activating Protein Complex toward Rheb. Current Biology 13, 1259-1268. Tee AR, M.B., Roux PP, et al. (2003). Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase‐activating protein complex toward Rheb. Curr Biol 13, 1259–1268. Tomasoni, R., and Mondino, A. (2011). The tuberous sclerosis complex: balancing proliferation and survival. Biochem Soc Trans 39, 466-471. Wennerberg, K., Rossman, K.L., and Der, C.J. (2005). The Ras superfamily at a glance. J Cell Sci 118, 843-846. Yamagata, K., Sanders, L.K., Kaufmann, W.E., Yee, W., Barnes, C.A., Nathans, D., and Worley, P.F. (1994). rheb, a growth factor- and synaptic activity-regulated gene, encodes a novel Ras-related protein. J Biol Chem 269, 16333-16339. Yang, C., and Wang, X. (2021). Lysosome biogenesis: Regulation and functions. J Cell Biol 220. Yang, H., Yu, Z., Chen, X., Li, J., Li, N., Cheng, J., Gao, N., Yuan, H.X., Ye, D., Guan, K.L., et al. (2021). Structural insights into TSC complex assembly and GAP activity on Rheb. Nat Commun 12, 339. Yang W, T.A., Urano J, et al. (2001). Failure to farnesylate Rheb protein contributes to the enrichment of G0/G1 phase cells in the Schizosaccharomyces pombe farnesyltransferase mutant. Mol Microbiol 41, 1339–1347. Yi, K.H., and Lauring, J. (2016). Recurrent AKT mutations in human cancers: functional consequences and effects on drug sensitivity. Oncotarget 7, 4241-4251. Zhang J, K.J., Alexander A, et al. (2013). A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. . Nat Cell Biol 15, 1186–1196. Zhang, Y., Gao, X., Saucedo, L.J., Ru, B., Edgar, B.A., and Pan, D. (2003). Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5, 578-581. Zhenbang Chen, C., L., Trotman, David Shaffer, Hui-Kuan Lin, Zohar A. Dotan, Masaru Niki, Jason A. Koutcher, Howard I. Scher, Thomas Ludwig, et al. (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 6. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85133 | - |
| dc.description.abstract | 在正常或癌化的細胞中,Akt-Rheb-mTORC1 訊息途徑調控許多重要的生理代謝作用。然而,Akt如何透過影響Tuberous Sclerosis Complex protein complex (TSCC)的GTPase-activating protein (GAP)活性,進而調控Rheb的活性的機制,並不全然清楚。在本研究中我們提供證據描述一個訊息傳遞複合體,稱作TSC2-Akt-CBAP complexes controlling Rheb Desuppression (TACRD),可以藉由在溶酶體的表面上的CBAP調控TSC1/TSC2的結合,進而影響到TSCC的GAPase活性,以此來控制生長激素刺激之下Rheb的活性。我們的細胞內以及試管內實驗一致顯示,CBAP可以藉由其N端的疏水區域,與TSC1競爭TSC2 的HBD片段的結合,來調節TACRD的GAPase功能。更進一步,在溶酶體的表面上高量表達的CBAP,會透過一種TSC2依賴的機制,不儘可以活化mTORC1訊息途徑, 也能導致溶酶體生成變多,與TSC2基因缺失對於細胞生理影響的表現型相似。因此我們的研究揭露了另外一種抑制TSC2活性的機制,以及更進一步顯示CBAP在mTORC1調控溶酶體生成以及細胞生長的訊號途徑中扮演一定的角色。 | zh_TW |
| dc.description.abstract | The Akt-Rheb-mTORC1 signaling axis controls many crucial pathways in normal and tumorous cells. However, how Akt regulates the GTPase-activating protein (GAP) activity of Tuberous Sclerosis Complex protein complex (TSCC) on the small GTPase Rheb is incompletely understood. We provide evidence for a signaling platform, termed TSC2-Akt-CBAP complexes controlling Rheb Desuppression (TACRD), operating on lysosomal membranes where CBAP and growth factor stimulation regulate TSC1/TSC2 association and the GAP activity of TSCC towards Rheb. Our in vitro and in vivo assays reveal that CBAP modulates TACRD function partly by competing with TSC1 for binding with the harmatin-binding domain of TSC2 via the CBAP N-terminal hydrophobic domain. Lysosomal enrichment of CBAP not only activated mTORC1 signaling pathway, but also enhanced lysosomal biogenesis via a TSC2-dependent mechanism, phenocopying TSC2-null phenotypes. Our study reveals an alternative TSC2-inactivation mechanism and underscores the importance of CBAP to mTORC1-mediated regulation and lysosomal biogenesis during cell growth and oncogenesis. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:45:42Z (GMT). No. of bitstreams: 1 U0001-1008202213344000.pdf: 5327113 bytes, checksum: a5b0642a11183762d134233f07221f51 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract iv Contents v List of Figures viii List of Supplementary Figure x Chapter 1 Introduction 1 1.1 AKT 1 1.2 AKT and cancers 1 1.3 TSC 2 1.4 mTORC1 3 1.5 Akt regulates mTORC1 signaling through TSC2 4 1.6 Rheb 4 1.7 Rheb mutants and cancers 5 1.8 TSCC inhibits mTORC1 via hydrolysis of Rheb-GTP 5 1.9 Lysosomes as a hub for mTORC1 signaling 6 1.10 Rheb and TSCC on lysosomes 7 1.11 Lysosomes and cancers 7 1.12 Lysosome biogenesis 8 1.13 TSC1/2 deficiency and lysosomal biogenesis 9 1.14 CBAP 9 Chapter 2 Materials and Methods 12 2.1 Materials 12 2.1.1 Cell lines 12 2.1.2 Antibodies and reagents 12 2.1.3 Plasmids 12 2.2 Methods 13 2.2.1 Starvation and insulin re-stimulation 13 2.2.2 Transient transfection of plasmids 14 2.2.3 Cell lysis, subcellular fractionation, immunoprecipitation and immunoblotting 14 2.2.4 Immunofluorescence staining, confocal microscopy and quantification of colocalization 15 2.2.5 Proximity Ligation Assay (PLA) 16 2.2.6 Calf intestinal alkaline phosphatase (CIP) treatment 16 2.2.7 Measurement of Rheb-GTP loading status 16 2.2.8 Affinity purification of GST-Rheb and in vitro GAP assay 17 2.2.9 Lysosome purification by Lyso-IP method 18 2.2.10 Lysosome Enrichment 18 Chapter 3 Result 20 3.1 CBAP, Rheb and Akt all display widespread intracellular distributions 20 3.2 Akt-TSCC-CBAP-Rheb forms a supramolecular complex 21 3.3 Oncogenic and insulin signals regulate the Akt•TSCC•CBAP•Rheb supramolecular complex 22 3.4 TSC2-Akt-CBAP Complex Controlling Rheb Desuppression (TACRD) regulates the GAP activity of TSCC 24 3.5 CBAP directly interacts with the harmatin-binding domain of TSC2 26 3.6 CBAP scaffolding is important to the biological function of TACRD 27 3.7 Lysosomal-anchored CBAP phenocopies the effects of TSC2 deficiency in terms of lysosome biogenesis and cell proliferation 29 Discussion 33 Figures 37 Appendix 73 TABLE 98 References 100 | |
| dc.language.iso | en | |
| dc.subject | mTORC1 activation | zh_TW |
| dc.subject | Akt | zh_TW |
| dc.subject | Rheb small GTPase | zh_TW |
| dc.subject | TSC2 deficiency | zh_TW |
| dc.subject | CBAP | zh_TW |
| dc.subject | 細胞生長調控 | zh_TW |
| dc.subject | TFEB | zh_TW |
| dc.subject | cell growth control | en |
| dc.subject | mTORC1 activation | en |
| dc.subject | TFEB nuclear localization | en |
| dc.subject | oncogenesis | en |
| dc.subject | Akt | en |
| dc.subject | Rheb small GTPase | en |
| dc.subject | TSC2 deficiency | en |
| dc.subject | CBAP | en |
| dc.title | 探討 CBAP 在 Akt/TSCC/Rheb/mTORC1 胰島素的刺激及活化中的角色 | zh_TW |
| dc.title | Study on the role of CBAP in insulin stimulated activation of the Akt/TSCC/Rheb/mTORC1 signaling pathway | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 楊性芳(Hsin-Fang Yang-Yen),李芳仁(Fang-Jen Lee),張智芬(Zee-Fen Chang),徐立中(Li-Chung Hsu) | |
| dc.subject.keyword | Akt,Rheb small GTPase,TSC2 deficiency,CBAP,細胞生長調控,TFEB,mTORC1 activation, | zh_TW |
| dc.subject.keyword | Akt,Rheb small GTPase,TSC2 deficiency,CBAP,cell growth control,oncogenesis,TFEB nuclear localization,mTORC1 activation, | en |
| dc.relation.page | 109 | |
| dc.identifier.doi | 10.6342/NTU202202252 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-11 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-01 | - |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1008202213344000.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
