請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85124完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳耀銘(Yaow-Ming Chen) | |
| dc.contributor.author | Cheng-Han Lin | en |
| dc.contributor.author | 林承翰 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:45:08Z | - |
| dc.date.copyright | 2022-08-19 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-10 | |
| dc.identifier.citation | [1] G. N. Chethan and G. Kodeeswara Kumaran, 'Performance Analysis of PMSM Drive with SpaceVector PWM and Sinusoidal PWM fed VSI,' International Conference on Power Electronics Applications and Technology in Present Energy Scenario, pp. 1-6, 2019. [2] K. Baoquan, L. Chunyan, and C. Shukang, 'Flux-Weakening-Characteristic Analysis of a New Permanent-Magnet Synchronous Motor Used for Electric Vehicles,' in IEEE Transactions on Plasma Science, vol. 39, no. 1, pp. 511-515, Jan. 2011. [3] P. Pillay and R. Krishnan, 'Application characteristics of permanent magnet synchronous and brushless DC motors for servo drives,' in IEEE Transactions on Industry Applications, vol. 27, no. 5, pp. 986-996, Sept.-Oct. 1991, doi: 10.1109/28.90357. [4] Y. N. Dementyev, N. V. Kojain, A. D. Bragin and L. S. Udut, 'Control system with sinusoidal PWM three-phase inverter with a frequency scalar control of induction motor,' 2015 International Siberian Conference on Control and Communications (SIBCON), 2015, pp. 1-6, doi: 10.1109/SIBCON.2015.7147008. [5] V. M. Bida, D. V. Samokhvalov and F. S. Al-Mahturi, 'PMSM vector control techniques — A survey,' 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2018, pp. 577-581, doi: 10.1109/EIConRus.2018.8317164. [6] Morris Brenna, Federica Foiadelli, and Dario Zaninelli, 'Electrical Railway Transportation Systems,' John Wiley and Sons Ltd., Jun. 2018. [7] Z. Wang, J. Chen, M. Cheng and K. T. Chau, 'Field-Oriented Control and Direct Torque Control for Paralleled VSIs Fed PMSM Drives With Variable Switching Frequencies,' in IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 2417-2428, March 2016, doi: 10.1109/TPEL.2015.2437893. [8] Y. Choi, H. H. Choi and J. Jung, 'Feedback Linearization Direct Torque Control With Reduced Torque and Flux Ripples for IPMSM Drives,' in IEEE Transactions on Power Electronics, vol. 31, no. 5, pp. 3728-3737, May 2016, doi: 10.1109/TPEL.2015.2460249. [9] L. Amezquita-Brooks, J. Liceaga-Castro and E. Liceaga-Castro, 'Speed and Position Controllers Using Indirect Field-Oriented Control: A Classical Control Approach,' in IEEE Transactions on Industrial Electronics, vol. 61, no. 4, pp. 1928-1943, April 2014, doi: 10.1109/TIE.2013.2262750. [10] J. Chiasson, Modelling and High-Performance Control of Electric Machines, USA, NJ, Piscataway:IEEE Press, 2005. [11] M. A. Masrur, 'Studies on the effect of filtering, digitization, and computation algorithm on the ABC-DQ current transformation in PWM inverter drive system,' in IEEE Transactions on Vehicular Technology, vol. 44, no. 2, pp. 356-365, May 1995, doi: 10.1109/25.385929. [12] Zhang Guangzhen, Zhao Feng, Wang Yongxing, Wen Xuhui and Cong Wei, 'Analysis and optimization of current regulator time delay in Permanent Magnet Synchronous Motor drive system,' 2013 International Conference on Electrical Machines and Systems (ICEMS), 2013, pp. 2286-2290, doi: 10.1109/ICEMS.2013.6713235. [13] Haoyuan Li et al., 'Multi-objective visual analysis of PI current regulator for high performance PMSM drives,' 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), 2016, pp. 1368-1372, doi: 10.1109/IPEMC.2016.7512489. [14] S. K. Panda, J. M. S. Lim, P. K. Dash and K. S. Lock, 'Gain-scheduled PI speed controller for PMSM drive,' Proceedings of the IECON'97 23rd International Conference on Industrial Electronics, Control, and Instrumentation (Cat. No.97CH36066), 1997, pp. 925-930 vol.2, doi: 10.1109/IECON.1997.672113.C. J. Harris and S. A. Billings eds., 'Self-Tuning and Adaptive Control: Theory and Applications', Stevenage: Peter Peregrinus, 1981. [15] Li Fang, Wang Yushun and Wang Ruiqi, 'Simulation of speed-control system for PMSM based on sliding mode control,' Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC), 2013, pp. 52-56, doi: 10.1109/MEC.2013.6885049. [16] H. H. Choi, N. T. Vu and J. Jung, 'Digital Implementation of an Adaptive Speed Regulator for a PMSM,' in IEEE Transactions on Power Electronics, vol. 26, no. 1, pp. 3-8, Jan. 2011, doi: 10.1109/TPEL.2010.2055890. [17] E. Tal and S. Karaman, 'Accurate Tracking of Aggressive Quadrotor Trajectories Using Incremental Nonlinear Dynamic Inversion and Differential Flatness,' in IEEE Transactions on Control Systems Technology, vol. 29, no. 3, pp. 1203-1218, May 2021, doi: 10.1109/TCST.2020.3001117. [18] Mengmei Zhu et al, 'Moment of Inertia Identification based on Particle Swarm Optimization Model Reference Adaptive for Permanent Magnet Synchronous Motor ', 2019 IOP Conf. Ser.: Earth Environ. Sci. 223 012011 [19] I. Shchur and Y. Biletskyi, 'Energetic Microscopic Representation (EMR) and Passivity-Based Control of Multi-Input Systems with Non-Linear Coupled Dynamics (PMSM control example),' 2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP), 2020, pp. 1-6, doi: 10.1109/PAEP49887.2020.9240793. [20] C. Hsu and Y. Lai, 'Novel on-line optimal bandwidth search and auto tuning techniques for servo motor drives,' 2016 IEEE Energy Conversion Congress and Exposition (ECCE), 2016, pp. 1-8, doi: 10.1109/ECCE.2016.7855299. [21] H. N. Tran, T. T. Nguyen, H. Q. Cao, T. H. Nguyen, H. X. Nguyen and J. W. Jeon, 'Auto-Tuning Controller Using MLPSO With K-Means Clustering and Adaptive Learning Strategy for PMSM Drives,' in IEEE Access, vol. 10, pp. 18820-18831, 2022, doi: 10.1109/ACCESS.2022.3150777. [22] J. Linares-Flores, C. García-Rodríguez, H. Sira-Ramírez and O. D. Ramírez-Cárdenas, 'Robust Backstepping Tracking Controller for Low-Speed PMSM Positioning System: Design, Analysis, and Implementation,' in IEEE Transactions on Industrial Informatics, vol. 11, no. 5, pp. 1130-1141, Oct. 2015, doi: 10.1109/TII.2015.2471814. [23] Y. Wang, Y. Feng, X. Zhang and J. Liang, 'A New Reaching Law for Antidisturbance Sliding-Mode Control of PMSM Speed Regulation System,' in IEEE Transactions on Power Electronics, vol. 35, no. 4, pp. 4117-4126, April 2020, doi: 10.1109/TPEL.2019.2933613. [24] G. Prior and M. Krstic, 'Quantized-Input Control Lyapunov Approach for Permanent Magnet Synchronous Motor Drives,' in IEEE Transactions on Control Systems Technology, vol. 21, no. 5, pp. 1784-1794, Sept. 2013, doi: 10.1109/TCST.2012.2212246. [25] F. Aghili, 'Optimal Feedback Linearization Control of Interior PM Synchronous Motors Subject to Time-Varying Operation Conditions Minimizing Power Loss,' in IEEE Transactions on Industrial Electronics, vol. 65, no. 7, pp. 5414-5421, July 2018, doi: 10.1109/TIE.2017.2784348. [26] Q. He, Y. Tan, X. Liu, Q. Jia and J. Liu, 'Reconfigurable Nonlinear Dynamic Inversion for Attitude Control of a Structurally Damaged Aircraft,' in IEEE Access, vol. 8, pp. 199931-199943, 2020, doi: 10.1109/ACCESS.2020.3035436. [27] F. Wang, P. Wang, H. Deng and B. Chen, 'Nonlinear Dynamic Inversion Control of VTOL Tilt-Wing UAV,' 2018 Eighth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), 2018, pp. 1170-1174, doi: 10.1109/IMCCC.2018.00243. [28] G. Chen, A. Liu, J. Hu, J. Feng and Z. Ma, 'Attitude and Altitude Control of Unmanned Aerial-Underwater Vehicle Based on Incremental Nonlinear Dynamic Inversion,' in IEEE Access, vol. 8, pp. 156129-156138, 2020, doi: 10.1109/ACCESS.2020.3015857. [29] 楊憲東, 非線性系統與控制II 控制設計。成大出版社, 2016年7月 [30] P. Crnosija, R. Krishnan and T. Bjazic, 'Optimization of PM Brushless DC Motor Drive Speed Controller Using Modification of Ziegler-Nichols Methods Based on Bodé Plots,' 2006 12th International Power Electronics and Motion Control Conference, 2006, pp. 343-348, doi: 10.1109/EPEPEMC.2006.4778424. [31] S. Li and H. Gu, 'Fuzzy Adaptive Internal Model Control Schemes for PMSM Speed-Regulation System,' in IEEE Transactions on Industrial Informatics, vol. 8, no. 4, pp. 767-779, Nov. 2012, doi: 10.1109/TII.2012.2205581. [32] P. Marino, M. Milano and F. Vasca, 'Linear quadratic state feedback and robust neural network estimator for field-oriented-controlled induction motors,' in IEEE Transactions on Industrial Electronics, vol. 46, no. 1, pp. 150-161, Feb. 1999, doi: 10.1109/41.744406. [33] M. Calvini, M. Carpita, A. Formentini and M. Marchesoni, 'PSO-Based Self-Commissioning of Electrical Motor Drives,' in IEEE Transactions on Industrial Electronics, vol. 62, no. 2, pp. 768-776, Feb. 2015, doi: 10.1109/TIE.2014.2349478. [34] M. A. M. Cheema, J. E. Fletcher, D. Xiao and M. F. Rahman, 'A Linear Quadratic Regulator-Based Optimal Direct Thrust Force Control of Linear Permanent-Magnet Synchronous Motor,' in IEEE Transactions on Industrial Electronics, vol. 63, no. 5, pp. 2722-2733, May 2016, doi: 10.1109/TIE.2016.2519331. [35] M. A. M. Cheema, J. E. Fletcher, D. Xiao and M. F. Rahman, 'A Linear Quadratic Regulator-Based Optimal Direct Thrust Force Control of Linear Permanent-Magnet Synchronous Motor,' in IEEE Transactions on Industrial Electronics, vol. 63, no. 5, pp. 2722-2733, May 2016, doi: 10.1109/TIE.2016.2519331. [36] T. Shi, Y. Yan, Z. Zhou, M. Xiao and C. Xia, 'Linear Quadratic Regulator Control for PMSM Drive Systems Using Nonlinear Disturbance Observer,' in IEEE Transactions on Power Electronics, vol. 35, no. 5, pp. 5093-5101, May 2020, doi: 10.1109/TPEL.2019.2947259. [37] C. J. O’Rourke, M. M. Qasim, M. R. Overlin and J. L. Kirtley, 'A Geometric Interpretation of Reference Frames and Transformations: dq0, Clarke, and Park,' in IEEE Transactions on Energy Conversion, vol. 34, no. 4, pp. 2070-2083, Dec. 2019, doi: 10.1109/TEC.2019.2941175. [38] Gonzalo Abad, 'Power Electronics and Electric Drives for Traction Applications', John Wiley and Sons, Ltd. 2017. [39] I. V. Blagouchine and E. Moreau, 'Control of a Speech Robot via an Optimum Neural-Network-Based Internal Model With Constraints,' in IEEE Transactions on Robotics, vol. 26, no. 1, pp. 142-159, Feb. 2010, doi: 10.1109/TRO.2009.2033331. [40] H. Cha, T. -K. Vu and J. -E. Kim, 'Design and control of Proportional-Resonant controller based Photovoltaic power conditioning system,' 2009 IEEE Energy Conversion Congress and Exposition, 2009, pp. 2198-2205, doi: 10.1109/ECCE.2009.5316374. [41] M. Abassi, A. Khlaief, O. Saadaoui, A. Chaari and M. Boussak, 'Performance analysis of FOC and DTC for PMSM drives using SVPWM technique' 2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), 2015, pp. 228-233, doi: 10.1109/STA.2015.7505167. [42] 楊亦涵, 馬達狀態擴增型全狀態回授之直流匯流排電壓控制。國立台灣大學, 電機資訊學院電機工程學系碩士學位論文, 2021年6月。 [43] Chen, Chi-Tsong 1999. Linear System Theory and Design, 3rd. ed., Oxford University Press [44] Kwakernaak, Huibert & Sivan, Raphael. Linear Optimal Control Systems. First Edition. Wiley-Interscience. 1972. [45] Cishen Zhang and Minyue Fu, 'A revisit to the gain and phase margins of linear quadratic regulators,' in IEEE Transactions on Automatic Control, vol. 41, no. 10, pp. 1527-1530, Oct. 1996, doi: 10.1109/9.539438. [46] W. F. Arnold and A. J. Laub, 'Generalized eigenproblem algorithms and software for algebraic Riccati equations,' in Proceedings of the IEEE, vol. 72, no. 12, pp. 1746-1754, Dec. 1984, doi: 10.1109/PROC.1984.13083. [47] Thierry Miquel. Introduction to Optimal Control. Master. Introduction to optimal control, ENAC,France. 2020. hal-0298773 [48] S. Kim, K. Lee and K. Lee, 'Singularity-Free Adaptive Speed Tracking Control for Uncertain Permanent Magnet Synchronous Motor,' in IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 1692-1701, Feb. 2016, doi: 10.1109/TPEL.2015.2422790. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85124 | - |
| dc.description.abstract | 本論文提出一種針對表面式永磁同步馬達(Surface Permanent Magnet Synchronous Motor; SPMSM)的非線性動態特性,所設計的新轉速與電流控制律(Control Law; 即用於決定控制器輸出的數學式),以取代傳統上磁場導向控制(Field-Oriented Control; FOC)中使用多組比例積分(Proportional-Integral; PI)控制器的轉速及電流回授控制迴路。傳統上FOC中使用的PI控制器需要對SPMSM的非線性動態特性進行線性近似(Linear Approximation)後,才能以線性系統理論(Linear System Theory)進行設計,但如此一來控制系統的閉迴路極點(Closed-loop Pole)位置將隨著操作點遠離近似點而有所變化,使得輸出響應不如預期。本文則採用具有將非線性系統進行輸入-狀態線性化(Input-State Linearization)效果的非線性動態逆控制(Nonlinear Dynamic Inversion Control; NDIC)方法,推導出SPMSM的轉速與電流控制律。控制律中直接包含了可供自由選擇且不會隨操作點變動而改變的控制系統閉迴路極點位置,因此可以直接使用線性系統理論來設計極點位置以確保閉迴路穩定性並設計暫態響應特性,且在寬廣的操作範圍中皆會維持此設計好的暫態響應特性。而在線性系統理論之中,線性二次調節器(Linear Quadratic Regulator; LQR)即是常見的用於決定閉迴路極點位置的方法,其特點為可確保閉迴路系統穩定性和強健性(Robustness),並可透過設定欲最佳化的二次成本函數(Cost Function)中的加權因子(Weighting Factor)來調整輸出響應。因此,在進行NDIC控制律的極點擺置時,若搭配LQR進行設計,則可透過設定少數的加權因子即得到兼具穩定性和強健性的轉速響應。這即是達到了控制器設計中,兼具穩定性與調整便利性的自動調適(Automatic-Tuning)功能。將NDIC控制律搭配LQR進行極點擺置的方法,在本論文中稱為NDICLQR。本文將針對NDIC應用於SPMSM的轉速與電流控制律進行詳細推導,並進行考慮馬達參數誤差下的穩定度分析,以及說明如何將LQR方法與NDIC控制律結合以達成自動調適的功能。最後,這些理論分析的成果將以MATLAB程式進行微分方程式數值模擬得到初步驗證,並在額定功率2kW、額定轉速2000rpm的永磁同步馬達實驗平台上獲得成功驗證。 | zh_TW |
| dc.description.abstract | In this paper, a feedback control technique with automatic-tuning function using nonlinear dynamic inversion control (NDIC) in the speed controller of the drive system of surface permanent magnet synchronous motors (SPMSMs) will be introduced. Conventional automatic-tuning methods for SPMSMs are mostly based on the approximation of linear time-invariant system characteristics, which would be improper when the parameters or operating conditions of the SPMSMs vary significantly with time. Especially, the moment of inertia of the mechanical load of SPMSM can change a lot during the speed control operation. Besides, due to the nonlinear characteristics of the dynamical behavior of SPMSMs, the transient response performance of the designed linear controllers operating at different speed intervals may be far from expected. Therefore, a nonlinear controller which can deal with the nonlinear dynamical behavior of SPMSMs and stabilize the system against the time-varying motor parameters is required. The control law derived using NDIC method has the above advantages while transforming the nonlinear system dynamics to a linear one at the same time, which will make the controller design problem simpler. After that, the linear quadratic regulator (LQR), which is widely used for the linear control system will be combined with NDIC in order to achieve the automatic-tuning function, and the whole control method is named after NDICLQR. The derivation and analysis of control laws of SPMSMs using NDIC will be shown, and then the automatic-tuning method using NDICLQR will be presented. Finally, the numerical simulation using MATLAB and experimental results on the SPMSM testing platform will be used to verify the proposed method. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:45:08Z (GMT). No. of bitstreams: 1 U0001-0808202215363100.pdf: 4377397 bytes, checksum: af408af48641a279aa8c7666ad03b290 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 I 致謝 II 摘要 III ABSTRACT IV 目錄 V 圖目錄 VII 表目錄 IX 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧與動機 3 1-3 章節概要 7 第二章 永磁同步馬達基本操作原理 9 2-1 帕克轉換 10 2-2 動態方程式 11 2-2.1 永磁同步馬達(PMSM) 11 2-2.2 表面式永磁同步馬達(SPMSM) 13 2-3 磁場導向控制原理 14 2-4 傳統磁場導向控制器設計方法 17 第三章 非線性動態逆控制律與自動調適方法 26 3-1 非線性動態逆控制 26 3-2 d軸電流控制律推導 28 3-3 轉速控制律推導 30 3-4 NDIC控制律結合LQR之自動調適法 32 3-5 考慮參數誤差下的穩定度分析 37 第四章 電腦數值模擬與分析 45 4-1 數值模擬程式 45 4-2 加速暫態響應模擬 47 4-3 加載暫態響應模擬 48 4-4 線上自動調適模擬 49 第五章 實作驗證 51 5-1 實驗架設 51 5-2 加速暫態響應實驗 54 5-3 加載暫態響應實驗 64 5-4 線上自動調適實驗 66 第六章 結論與未來發展 68 6-1 結論 68 6-2 未來研究方向 68 參考文獻 69 | |
| dc.language.iso | zh-TW | |
| dc.subject | 自動調適 | zh_TW |
| dc.subject | 線性二次調節器 | zh_TW |
| dc.subject | 磁場導向控制 | zh_TW |
| dc.subject | 馬達驅動器 | zh_TW |
| dc.subject | 轉速控制 | zh_TW |
| dc.subject | 非線性動態逆控制 | zh_TW |
| dc.subject | 永磁同步馬達 | zh_TW |
| dc.subject | 回授線性化 | zh_TW |
| dc.subject | Automatic-tuning | en |
| dc.subject | Linear quadratic regulator | en |
| dc.subject | Feedback linearization | en |
| dc.subject | Nonlinear dynamic inversion control | en |
| dc.subject | Speed control | en |
| dc.subject | Motor drive | en |
| dc.subject | Field-oriented control | en |
| dc.subject | Surface permanent magnet synchronous motor (SPMSM) | en |
| dc.title | 非線性動態逆控制應用於表面式永磁同步馬達驅動系統之轉速控制器自動調適 | zh_TW |
| dc.title | Automatic Tuning of Speed Controller for SPMSM Drive System using Nonlinear Dynamic Inversion Control | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳偉倫(Woei-Luen Chen),陳景然(Ching-Jan Chen),楊士進(Shih-Chin Yang),唐丞譽(Cheng-Yu Tang),黃仁宏(Peter J. Huang) | |
| dc.subject.keyword | 自動調適,永磁同步馬達,磁場導向控制,馬達驅動器,轉速控制,非線性動態逆控制,回授線性化,線性二次調節器, | zh_TW |
| dc.subject.keyword | Automatic-tuning,Surface permanent magnet synchronous motor (SPMSM),Field-oriented control,Motor drive,Speed control,Nonlinear dynamic inversion control,Feedback linearization,Linear quadratic regulator, | en |
| dc.relation.page | 74 | |
| dc.identifier.doi | 10.6342/NTU202202150 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-11 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2027-08-09 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0808202215363100.pdf 未授權公開取用 | 4.27 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
