請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85109
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張永祺(Yung-Chi Chang) | |
dc.contributor.author | Chien-Yu Lai | en |
dc.contributor.author | 賴芊妤 | zh_TW |
dc.date.accessioned | 2023-03-19T22:44:12Z | - |
dc.date.copyright | 2022-10-03 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-12 | |
dc.identifier.citation | 1. Lancefield, R.C., A serological differentiation of human and other groups of Hemolytic Streptococci. J Exp Med, 1933. 57(4): p. 571-95. 2. Russo, B.T., et al., The M Protein of Streptococcus pyogenes Strain AP53 Retains Cell Surface Functional Plasminogen Binding after Inactivation of the Sortase A Gene. J Bacteriol, 2020. 202(10). 3. Evans, A.C., Studies on Hemolytic Streptococci: II. Streptococcus pyogenes. J Bacteriol, 1936. 31(6): p. 611-24. 4. Ralph, A.P. and J.R. Carapetis, Group a streptococcal diseases and their global burden. Curr Top Microbiol Immunol, 2013. 368: p. 1-27. 5. Carapetis, J.R., et al., The global burden of group A streptococcal diseases. Lancet Infect Dis, 2005. 5(11): p. 685-94. 6. Satoskar, A.A., S.V. Parikh, and T. Nadasdy, Epidemiology, pathogenesis, treatment and outcomes of infection-associated glomerulonephritis. Nat Rev Nephrol, 2020. 16(1): p. 32-50. 7. Arvind, B. and S. Ramakrishnan, Rheumatic Fever and Rheumatic Heart Disease in Children. Indian J Pediatr, 2020. 87(4): p. 305-311. 8. Avire, N.J., H. Whiley, and K. Ross, A Review of Streptococcus pyogenes: Public Health Risk Factors, Prevention and Control. Pathogens, 2021. 10(2). 9. Mosites, E., et al., Outbreak of Invasive Infections From Subtype emm26.3 Group A Streptococcus Among Homeless Adults-Anchorage, Alaska, 2016-2017. Clin Infect Dis, 2018. 66(7): p. 1068-1074. 10. Tyrrell, G.J., et al., Increasing Rates of Invasive Group A Streptococcal Disease in Alberta, Canada; 2003-2017. Open Forum Infect Dis, 2018. 5(8): p. ofy177. 11. Steer, A.C., et al., High burden of invasive beta-haemolytic streptococcal infections in Fiji. Epidemiol Infect, 2008. 136(5): p. 621-7. 12. Seale, A.C., et al., Invasive Group A Streptococcus Infection among Children, Rural Kenya. Emerg Infect Dis, 2016. 22(2): p. 224-32. 13. Hanage, W.P. and S.A. Shelburne, Streptococcus pyogenes With Reduced Susceptibility to β-Lactams: How Big an Alarm Bell? Clin Infect Dis, 2020. 71(1): p. 205-206. 14. Markowitz, M., M.A. Gerber, and E.L. Kaplan, Treatment of streptococcal pharyngotonsillitis: reports of penicillin's demise are premature. J Pediatr, 1993. 123(5): p. 679-85. 15. Brook, I., Penicillin failure in the treatment of streptococcal pharyngo-tonsillitis. Curr Infect Dis Rep, 2013. 15(3): p. 232-5. 16. Barnett, M.L. and J.A. Linder, Antibiotic prescribing to adults with sore throat in the United States, 1997-2010. JAMA Intern Med, 2014. 174(1): p. 138-40. 17. Ebell, M.H., et al., The rational clinical examination. Does this patient have strep throat? Jama, 2000. 284(22): p. 2912-8. 18. Morgan, D.J., et al., Non-prescription antimicrobial use worldwide: a systematic review. Lancet Infect Dis, 2011. 11(9): p. 692-701. 19. Karthikeyan, G. and B.M. Mayosi, Is primary prevention of rheumatic fever the missing link in the control of rheumatic heart disease in Africa? Circulation, 2009. 120(8): p. 709-13. 20. Osowicki, J., et al., WHO/IVI global stakeholder consultation on group A Streptococcus vaccine development: Report from a meeting held on 12-13 December 2016. Vaccine, 2018. 36(24): p. 3397-3405. 21. Lancefield, R.C., Persistence of type-specific antibodies in man following infection with group A streptococci. J Exp Med, 1959. 110(2): p. 271-92. 22. Fox, E.N., et al., Protective study with a group A streptococcal M protein vaccine. Infectivity challenge of human volunteers. J Clin Invest, 1973. 52(8): p. 1885-92. 23. Massell, B.F., L.H. Honikman, and J. Amezcua, Rheumatic fever following streptococcal vaccination. Report of three cases. Jama, 1969. 207(6): p. 1115-9. 24. Steer, A.C., et al., Global emm type distribution of group A streptococci: systematic review and implications for vaccine development. Lancet Infect Dis, 2009. 9(10): p. 611-6. 25. Campbell, P.T., et al., Investigation of group A Streptococcus immune responses in an endemic setting, with a particular focus on J8. Vaccine, 2018. 36(50): p. 7618-7624. 26. Castro, S.A. and H.C. Dorfmueller, A brief review on Group A Streptococcus pathogenesis and vaccine development. R Soc Open Sci, 2021. 8(3): p. 201991. 27. Sarvas, M., et al., Post-translocational folding of secretory proteins in Gram-positive bacteria. Biochim Biophys Acta, 2004. 1694(1-3): p. 311-27. 28. Hyyrylainen, H.L., et al., D-Alanine substitution of teichoic acids as a modulator of protein folding and stability at the cytoplasmic membrane/cell wall interface of Bacillus subtilis. J Biol Chem, 2000. 275(35): p. 26696-703. 29. Prabudiansyah, I. and A.J.M. Driessen, The Canonical and Accessory Sec System of Gram-positive Bacteria. Curr Top Microbiol Immunol, 2017. 404: p. 45-67. 30. Freudl, R., Leaving home ain't easy: protein export systems in Gram-positive bacteria. Res Microbiol, 2013. 164(6): p. 664-74. 31. van Wely, K.H., et al., Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol Rev, 2001. 25(4): p. 437-54. 32. Ünal, C.M., et al., PrsA2 (CD630_35000) of Clostridioides difficile Is an Active Parvulin-Type PPIase and a Virulence Modulator. Front Microbiol, 2018. 9: p. 2913. 33. Soltes, G.R., et al., The Activity of Escherichia coli Chaperone SurA Is Regulated by Conformational Changes Involving a Parvulin Domain. J Bacteriol, 2016. 198(6): p. 921-9. 34. Jakob, R.P., et al., Dimeric Structure of the Bacterial Extracellular Foldase PrsA. J Biol Chem, 2015. 290(6): p. 3278-92. 35. Jousselin, A., et al., The posttranslocational chaperone lipoprotein PrsA is involved in both glycopeptide and oxacillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother, 2012. 56(7): p. 3629-40. 36. Alonzo, F., 3rd, et al., Functional analysis of the Listeria monocytogenes secretion chaperone PrsA2 and its multiple contributions to bacterial virulence. Mol Microbiol, 2011. 80(6): p. 1530-48. 37. Vitikainen, M., et al., Quantitation of the capacity of the secretion apparatus and requirement for PrsA in growth and secretion of alpha-amylase in Bacillus subtilis. J Bacteriol, 2001. 183(6): p. 1881-90. 38. Ma, Y., et al., Identification and characterization of bicistronic speB and prsA gene expression in the group A Streptococcus. J Bacteriol, 2006. 188(21): p. 7626-34. 39. Galeotti, C.L., et al., Surface interactome in Streptococcus pyogenes. Mol Cell Proteomics, 2012. 11(4): p. M111.015206. 40. Wu, Z.Y., et al., Unique virulence role of post-translocational chaperone PrsA in shaping Streptococcus pyogenes secretome. Virulence, 2021. 12(1): p. 2633-2647. 41. Lei, B., et al., Identification of new candidate vaccine antigens made by Streptococcus pyogenes: purification and characterization of 16 putative extracellular lipoproteins. J Infect Dis, 2004. 189(1): p. 79-89. 42. Dunkelberger, J.R. and W.C. Song, Complement and its role in innate and adaptive immune responses. Cell Res, 2010. 20(1): p. 34-50. 43. Keller, M.A. and E.R. Stiehm, Passive immunity in prevention and treatment of infectious diseases. Clin Microbiol Rev, 2000. 13(4): p. 602-14. 44. Shen, Y., et al., Identification and Characterization of Fluoroquinolone Non-susceptible Streptococcus pyogenes Clones Harboring Tetracycline and Macrolide Resistance in Shanghai, China. Front Microbiol, 2018. 9: p. 542. 45. Musser, J.M., et al., Reduced In Vitro Susceptibility of Streptococcus pyogenes to β-Lactam Antibiotics Associated with Mutations in the pbp2x Gene Is Geographically Widespread. J Clin Microbiol, 2020. 58(4). 46. Revocation of status of specific products; Group A streptococcus. Direct final rule. Fed Regist, 2005. 70(231): p. 72197-9. 47. Bisno, A.L., et al., Prospects for a group A streptococcal vaccine: rationale, feasibility, and obstacles--report of a National Institute of Allergy and Infectious Diseases workshop. Clin Infect Dis, 2005. 41(8): p. 1150-6. 48. Flores, A.R., et al., Human disease isolates of serotype m4 and m22 group a streptococcus lack genes required for hyaluronic acid capsule biosynthesis. mBio, 2012. 3(6): p. e00413-12. 49. Sutcliffe, I.C. and R.R. Russell, Lipoproteins of gram-positive bacteria. J Bacteriol, 1995. 177(5): p. 1123-8. 50. Rivera-Hernandez, T., et al., Vaccine-Induced Th1-Type Response Protects against Invasive Group A Streptococcus Infection in the Absence of Opsonizing Antibodies. mBio, 2020. 11(2). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85109 | - |
dc.description.abstract | 化膿性鏈球菌 (Streptococcus pyogenes) 又稱為 A 型鏈球菌 (Group A Streptococcus,GAS) 能造成多種臨床感染症,包含輕度的表皮感染以及嚴重侵襲 性疾病,而反覆的 GAS 感染亦可能引發嚴重的自體免疫性疾病,如風濕熱、風 濕性心臟病和腎小球腎炎等。現今多以青黴素或其衍生物等抗生素來治療 GAS 感染,然而基於抗生素濫用,也逐漸有抗藥菌株出現。此外,目前並無安全有效 的 GAS 疫苗上市,研發中的疫苗主要以 GAS 的重要毒力因子作為標的,但皆尚 未進入 III 期臨床試驗。PrsA 為革蘭氏陽性菌中負責摺疊與穩定分泌蛋白的膜上 脂蛋白,我們實驗室先前發現 PrsA 對 GAS 中許多毒力因子的成熟、生物膜形 成、宿主細胞黏附能力及小鼠軟組織感染均極為重要。由於 PrsA 在不同血清型 的 GAS 中具有幾乎相同的基因序列,因此我們想進一步探討 PrsA 作為 GAS 治 療或者預防標的的可能性。我們發現 PrsA 在不同血清型的 GAS 皆有表現,PrsA 抗體除了能夠直接辨識到這些 GAS 表面的 PrsA 外,也不會與人心臟組織產生交 叉反應。此外,PrsA 抗體能有效促進嗜中性球的殺菌力,降低人類全血中 GAS 的存活率。事先給予小鼠 PrsA 抗體也能有效降低小鼠受到 GAS 侵襲性感染時的 死亡情形。雖然在 PrsA 抗原免疫的先導實驗中觀察到小鼠雖可以產生 PrsA 抗 體,卻未能降低小鼠受到 GAS 侵襲性感染時的死亡率,我們推測此結果可能與 施打疫苗時使用 alum 作為佐劑,產生偏向 Th2 型的免疫反應相關。總體而言, 我們的實驗結果顯示 PrsA 具有免疫原性且 PrsA 抗體具有促進嗜中性球殺菌的 能力並可以保護宿主去抵禦 GAS 感染。 | zh_TW |
dc.description.abstract | Streptococcus pyogenes (Group A Streptococcus, GAS) can cause many clinical diseases ranging from superficial infections to severe invasive infections. Recurrent GAS infection is associated with occurrence of may even trigger severe autoimmune diseases such as rheumatic fever, rheumatic heart disease and glomerulonephritis. GAS infection is mainly treated with penicillin and its derivatives; however, antibiotic- resistant strains appear due to the misuse and overuse of antimicrobials. Currently, there are no safe and effective vaccines on the market. Most of the developing vaccine candidates are focused on the major surface proteins and virulence factors; however, none of these projects enter the phase III clinical trials. PrsA is a membrane-anchored lipoprotein responsible for the folding and stabilization of secreted proteins in Gram- positive bacteria. We have previously demonstrated that PrsA is critical for the virulence factors maturation, biofilm formation, host adhesion, and in vivo virulence in a murine soft tissue infection model. In this project, I aim to test whether PrsA may serve as a therapeutic target to treat GAS infection based on the prsA gene sequences are almost identical in different GAS serotypes. We found that PrsA is expressed in all the different GAS serotypes we tested, and the anti-PrsA antibody robustly recognizes surface-exposed PrsA. Notably, we did not observe the cross-reactivity of anti-PrsA antibody against the human cardiac myosin which is the major heart antigen recognized by the anti-M protein antibody. Moreover, the anti-PrsA antibody effectively promoted the neutrophil bactericidal efficacy and reduced the GAS survival in human whole blood. Mice received the anti-PrsA antisera prior to GAS challenge had significant higher survival rates compared to the mice received pre-immune sera. Despite all the PrsA-immunized mice produced high titers of PrsA-specific antibodies, we failed to observe the protective effects in the vaccinated animals upon invasive GAS challenge, which may be due to the biased Th2-prone immune responses induced by the Alum adjuvant used in this experiment. In summary, our results suggest that PrsA is immunogenic and can enhance the neutrophil bactericidal activities to protect the host against GAS infection. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:44:12Z (GMT). No. of bitstreams: 1 U0001-1108202219322300.pdf: 2856185 bytes, checksum: 9cf1e1d6131d9b21e763810e5e1dd9e8 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員會審定書 i 致謝 ii 中文摘要 iii Abstract iv 目錄 vi 圖表目錄 viii 附錄目錄 viii 壹、序論 1 一、A型鏈球菌 (group A Streptococcus) 1 1.A型鏈球菌的特性及分型 1 2.流行病學 1 3.治療 2 4.預防及疫苗 3 二、革蘭氏陽性菌 (Gram-positive bacteria) 蛋白分泌與折疊 4 1.轉位後修飾 (Post-translocational folding) 4 2.革蘭氏陽性菌主要摺疊因子 (folding factor) 4 3.PrsA蛋白的特性及功能 5 4.A型鏈球菌的PrsA 6 三、研究動機 6 貳、研究材料和方法 8 一、材料 8 1. 菌株 8 2. 抗體 9 3. 引子 9 二、研究方法 9 一、PrsA重組蛋白表現與Ni-NTA管柱層析 9 二、FPLC (Fast Protein Liquid Chromatography) 膠體過濾 10 三、PrsA兔抗血清抗體製作 10 四、兔抗血清之抗體純化 11 五、臨床菌株分型 11 六、洋菜膠體電泳 (DNA agarose electrophoresis) 12 七、膜蛋白樣品收集 12 八、全細胞溶解液收集 12 九、考馬斯藍染色 (Coomassie blue stain) 13 十、銀染 (Silver stain) 13 十一、西方墨點法 (Western blot) 13 十二、PrsA抗體辨識細菌能力測試 14 十三、人體組織交叉反應 (cross-reactivity) 試驗 14 十四、調理吞噬殺傷試驗 (Opsonophagocytic killing assay, OPKA) 14 十五、全血殺菌能力試驗 (Whole blood killing assay) 15 十六、被動免疫與GAS感染 (Passive immunization and GAS challenge) 16 十七、主動免疫與GAS感染 (Active immunization and GAS challenge) 16 十八、PrsA特異性抗體價數測試 16 參、實驗結果 18 一、產生PrsA重組蛋白 18 二、純化PrsA重組蛋白 18 三、PrsA兔抗血清之效價及特異性 19 四、PrsA抗體純化結果 19 五、GAS臨床分離株之分型 20 六、觀測PrsA蛋白在全細胞溶解液之表現 20 七、觀測PrsA膜蛋白之表現 20 八、PrsA抗體對A型鏈球菌表面辨識能力 21 九、感染S. pyogenes之小鼠中PrsA抗體表達情形 21 十、PrsA抗體與人體組織交叉反應 (cross-reactivity) 之情形 22 十一、PrsA抗體促進嗜中性球調理吞噬殺菌能力之作用 22 十二、PrsA抗體促進全血殺菌能力之作用 23 十三、PrsA抗體保護小鼠抵禦S. pyogenes感染之效用 23 十四、接種PrsA蛋白保護小鼠抵禦S. pyogenes感染之效用 24 肆、討論與未來研究方向 25 參考文獻 29 圖表 33 表一、GAS臨床分離株分型。 33 圖一、重組PrsA1與PrsA2在E. coli BL21中經IPTG誘導後之表現。 34 圖二、表現PrsA之E. coli BL21全細胞溶解液經Ni-NTA beads純化結果。 35 圖三、重組PrsA蛋白經Superdex 200管柱純化後之結果。 36 圖四、PrsA抗兔血清及PrsA抗體特異性確認。 37 圖五、臨床分離株S. pyogenes之PrsA在全細胞溶解液表達情形。 38 圖六、臨床分離株S. pyogenes之PrsA膜蛋白表達情形。 39 圖七、PrsA抗體對A型鏈球菌表面辨識能力。 40 圖八、感染S. pyogenes之小鼠中可以產生PrsA抗體。 41 圖九、PrsA抗體與人體組織交叉反應之情形。 42 圖十、PrsA兔抗血清對嗜中性球細胞調理吞噬殺菌能力之影響。 43 圖十一、PrsA抗體可促進A型鏈球菌株在人類全血中被清除的效力。 44 圖十二、施打PrsA抗體可促進受A型鏈球菌株感染之小鼠存活率。 45 圖十三、接種PrsA抗原無法促進受A型鏈球菌株感染之小鼠存活率。 46 附錄 47 附錄一、PrsA在不同血清型之A型鏈球菌中氨基酸序列比對。 47 | |
dc.language.iso | zh-TW | |
dc.title | 探討 PrsA 作為治療 GAS 感染新標的之可能性 | zh_TW |
dc.title | PrsA as a novel therapeutic target to treat GAS infection | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 邱浩傑(Hao-Chieh Chiu),張書蓉(Shu-Jung Chang) | |
dc.subject.keyword | A 型鏈球菌,PrsA,疫苗,侵入性感染, | zh_TW |
dc.subject.keyword | Streptococcus group A,PrsA,vaccine,invasive infection, | en |
dc.relation.page | 47 | |
dc.identifier.doi | 10.6342/NTU202202314 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-08-12 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
dc.date.embargo-lift | 2027-08-12 | - |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1108202219322300.pdf 目前未授權公開取用 | 2.79 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。