Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85105
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭瑞祥(Ruey-Shan Guo)
dc.contributor.authorYu-Hsuan Liaoen
dc.contributor.author廖祐萱zh_TW
dc.date.accessioned2023-03-19T22:43:57Z-
dc.date.copyright2022-08-15
dc.date.issued2022
dc.date.submitted2022-08-11
dc.identifier.citation[1] Antoniou, A., Edwards, H., & Storkey, A. (2018). How to train your MAML. arXiv preprint arXiv:1810.09502. [2] Arnold, S., Iqbal, S., & Sha, F. (2021). When MAML Can Adapt Fast and How to Assist When It Cannot Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research. https://proceedings.mlr.press/v130/arnold21a.html [3] Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473. [4] Bai, S., Kolter, J. Z., & Koltun, V. (2018). Convolutional Sequence Modeling Revisited. ICLR, [5] Bertinetto, L., Henriques, J. F., Valmadre, J., Torr, P., & Vedaldi, A. (2016). Learning feed-forward one-shot learners. Advances in neural information processing systems, 29. [6] Chan, L. L. T., Wu, X., Chen, J., Xie, L., & Chen, C. I. (2018). Just-In-Time Modeling With Variable Shrinkage Based on Gaussian Processes for Semiconductor Manufacturing. IEEE Transactions on Semiconductor Manufacturing, 31(3), 335-342. https://doi.org/10.1109/TSM.2018.2826012 [7] Chorowski, J. K., Bahdanau, D., Serdyuk, D., Cho, K., & Bengio, Y. (2015). Attention-based models for speech recognition. Advances in neural information processing systems, 28. [8] Dambon, O., Demmer, A., & Peters, J. (2006, 2006/01/01/). Surface Interactions in Steel Polishing for the Precision Tool Making. CIRP Annals, 55(1), 609-612. https://doi.org/https://doi.org/10.1016/S0007-8506(07)60494-6 [9] Di, Y., Jia, X., & Lee, J. (2017, 11/10). Enhanced Virtual Metrology on Chemical Mechanical Planarization Process using an Integrated Model and Data-Driven Approach. International Journal of Prognostics and Health Management, 8. https://doi.org/10.36001/ijphm.2017.v8i2.2641 [10] Dreyfus, P.-A., Psarommatis, F., May, G., & Kiritsis, D. (2022, 2022/01/17). Virtual metrology as an approach for product quality estimation in Industry 4.0: a systematic review and integrative conceptual framework. International Journal of Production Research, 60(2), 742-765. https://doi.org/10.1080/00207543.2021.1976433 [11] Elman, J. L. (1990, 1990/04/01/). Finding structure in time. Cognitive Science, 14(2), 179-211. https://doi.org/https://doi.org/10.1016/0364-0213(90)90002-E [12] Ferretti, S., Caputo, D., Penza, M., & D’Addona, D. M. (2013, 2013/01/01/). Monitoring Systems for Zero Defect Manufacturing. Procedia CIRP, 12, 258-263. https://doi.org/https://doi.org/10.1016/j.procir.2013.09.045 [13] Finn, C., Abbeel, P., & Levine, S. (2017). Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research. https://proceedings.mlr.press/v70/finn17a.html [14] Gambella, C., Ghaddar, B., & Naoum-Sawaya, J. (2021, 2021/05/01/). Optimization problems for machine learning: A survey. European Journal of Operational Research, 290(3), 807-828. https://doi.org/https://doi.org/10.1016/j.ejor.2020.08.045 [15] Haviv, A., Ram, O., Press, O., Izsak, P., & Levy, O. (2022). Transformer Language Models without Positional Encodings Still Learn Positional Information. arXiv preprint arXiv:2203.16634. [16] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, [17] Hermann, K. M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., & Blunsom, P. (2015). Teaching machines to read and comprehend. Advances in neural information processing systems, 28. [18] Hinton, G. E. (1989, 1989/09/01/). Connectionist learning procedures. Artificial Intelligence, 40(1), 185-234. https://doi.org/https://doi.org/10.1016/0004-3702(89)90049-0 [19] Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735 [20] Irie, K., Zeyer, A., Schlüter, R., & Ney, H. (2019). Language modeling with deep transformers. arXiv preprint arXiv:1905.04226. [21] Jebri, M. A., Graton, G., el Adel, E. M., Ouladsine, M., & Pinaton, J. (2016). Virtual metrology on Chemical Mechanical Planarization process based on Just-In-Time Learning. https://doi.org/10.1109/ICoSC.2016.7507082 [22] Jia, X., Di, Y., Feng, J., Yang, Q., Dai, H., & Lee, J. (2018, 2018/02/01/). Adaptive virtual metrology for semiconductor chemical mechanical planarization process using GMDH-type polynomial neural networks. Journal of Process Control, 62, 44-54. https://doi.org/https://doi.org/10.1016/j.jprocont.2017.12.004 [23] Jordan, M. I., & Mitchell, T. M. (2015, 2015/07/17). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260. https://doi.org/10.1126/science.aaa8415 [24] Kang, S. (2018). On Effectiveness of Transfer Learning Approach for Neural Network-Based Virtual Metrology Modeling. IEEE Transactions on Semiconductor Manufacturing, 31(1), 149-155. https://doi.org/10.1109/TSM.2017.2787550 [25] Kim, Y., Denton, C., Hoang, L., & Rush, A. M. (2017). Structured attention networks. arXiv preprint arXiv:1702.00887. [26] LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks, 3361(10), 1995. [27] LeCun, Y., Bengio, Y., & Hinton, G. (2015, 2015/05/01). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539 [28] Lei, Y., Yang, B., Jiang, X., Jia, F., Li, N., & Nandi, A. K. (2020, 2020/04/01/). Applications of machine learning to machine fault diagnosis: A review and roadmap. Mechanical Systems and Signal Processing, 138, 106587. https://doi.org/https://doi.org/10.1016/j.ymssp.2019.106587 [29] Li, H., Dong, W., Mei, X., Ma, C., Huang, F., & Hu, B.-G. (2019). LGM-Net: Learning to Generate Matching Networks for Few-Shot Learning Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research. https://proceedings.mlr.press/v97/li19c.html [30] Li, X., Sun, Z., Xue, J.-H., & Ma, Z. (2021, 2021/10/07/). A concise review of recent few-shot meta-learning methods. Neurocomputing, 456, 463-468. https://doi.org/https://doi.org/10.1016/j.neucom.2020.05.114 [31] Li, Z., Wu, D., & Yu, T. (2019). Prediction of Material Removal Rate for Chemical Mechanical Planarization Using Decision Tree-Based Ensemble Learning. Journal of Manufacturing Science and Engineering, 141(3). https://doi.org/10.1115/1.4042051 [32] Luo, J., & Dornfeld, D. A. (2001). Material removal mechanism in chemical mechanical polishing: theory and modeling. IEEE Transactions on Semiconductor Manufacturing, 14(2), 112-133. https://doi.org/10.1109/66.920723 [33] Luo, J., & Dornfeld, D. A. (2003). Review of Chemical-Mechanical Planarization Modeling for Integrated Circuit Fabrication: From Particle Scale to Die and Wafer Scales. https://escholarship.org/uc/item/4ct2n4jh [34] Luong, M.-T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025. [35] Maggipinto, M., Beghi, A., McLoone, S., & Susto, G. A. (2019, 2019/12/01/). DeepVM: A Deep Learning-based approach with automatic feature extraction for 2D input data Virtual Metrology. Journal of Process Control, 84, 24-34. https://doi.org/https://doi.org/10.1016/j.jprocont.2019.08.006 [36] Mishra, N., Rohaninejad, M., Chen, X., & Abbeel, P. (2017). A simple neural attentive meta-learner. arXiv preprint arXiv:1707.03141. [37] Moyne, J., & Iskandar, J. (2017). Big Data Analytics for Smart Manufacturing: Case Studies in Semiconductor Manufacturing. Processes, 5(3), 39. https://www.mdpi.com/2227-9717/5/3/39 [38] Moyne, J., Samantaray, J., & Armacost, M. (2016). Big Data Capabilities Applied to Semiconductor Manufacturing Advanced Process Control. IEEE Transactions on Semiconductor Manufacturing, 29(4), 283-291. https://doi.org/10.1109/TSM.2016.2574130 [39] Munkhdalai, T., & Yu, H. (2017). Meta networks. International Conference on Machine Learning, [40] Munkhdalai, T., Yuan, X., Mehri, S., & Trischler, A. (2018). Rapid adaptation with conditionally shifted neurons. ICML, 3661-3670. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071156601&partnerID=40&md5=6d93ced2d90df4fcaf8ed565ec89c63f [41] Nguyen, C., Li, X., Blanton, R. D. S., & Li, X. (2017, 12-15 Sept. 2017). Partial co-training for virtual metrology. 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), [42] Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., & Kavukcuoglu, K. (2016). Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. [43] Pan, T., Sheng, B., Wong, D. S., & Jang, S. (2011). A Virtual Metrology System for Predicting End-of-Line Electrical Properties Using a MANCOVA Model With Tools Clustering. IEEE Transactions on Industrial Informatics, 7(2), 187-195. https://doi.org/10.1109/TII.2010.2098416 [44] Park, C., Kim, Y., Park, Y., & Kim, S. B. (2018, 2018/09/01/). Multitask learning for virtual metrology in semiconductor manufacturing systems. Computers & Industrial Engineering, 123, 209-219. https://doi.org/https://doi.org/10.1016/j.cie.2018.06.024 [45] PingHsu, C., Wu, S., Junshien, L., Ko, F., Lo, H., Wang, J., Yu, C. H., & Liang, M. S. (2005, 13-15 Sept. 2005). Virtual metrology: a solution for wafer to wafer advanced process control. ISSM 2005, IEEE International Symposium on Semiconductor Manufacturing, 2005., [46] Preston, F. W. (1927, 1927). The Theory and Design of Plate Glass Polishing Machines. J. Soc. Glass Tech., 11, 214. https://cir.nii.ac.jp/crid/1573950399985063296 [47] Propes, N., & Rosca, J. (2016). PHM Data Challenge 2016. https://www.phmsociety.org/events/conference/phm/16/data-challenge. [48] Psarommatis, F., May, G., Dreyfus, P.-A., & Kiritsis, D. (2020, 2020/01/02). Zero defect manufacturing: state-of-the-art review, shortcomings and future directions in research. International Journal of Production Research, 58(1), 1-17. https://doi.org/10.1080/00207543.2019.1605228 [49] Ravi, S., & Larochelle, H. (2016). Optimization as a model for few-shot learning. [50] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986, 1986/10/01). Learning representations by back-propagating errors. Nature, 323(6088), 533-536. https://doi.org/10.1038/323533a0 [51] Rusu, A. A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero, S., & Hadsell, R. (2018). Meta-learning with latent embedding optimization. arXiv preprint arXiv:1807.05960. [52] Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., & Lillicrap, T. P. (2016). Meta-learning with memory-augmented neural networks. Proc. Int. Conf. Machine Learning, 48, 1842-1850. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040308896&partnerID=40&md5=56b7bd66a1f93dae366b3903f18e2943 [53] Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and momentum in deep learning. International conference on machine learning, [54] Tieng, H., Chen, C., Cheng, F., & Yang, H. (2017). Automatic Virtual Metrology and Target Value Adjustment for Mass Customization. IEEE Robotics and Automation Letters, 2(2), 546-553. https://doi.org/10.1109/LRA.2016.2645507 [55] Vallejo, M., Espriella, C., Gómez-Santamaría, J., Ramírez, A., & Delgado-Trejos, E. (2019, 10/04). Soft metrology based on machine learning: A review. Measurement Science and Technology, 31. https://doi.org/10.1088/1361-6501/ab4b39 [56] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30. [57] Wang, P., Gao, R. X., & Yan, R. (2017, 2017/01/01/). A deep learning-based approach to material removal rate prediction in polishing. CIRP Annals, 66(1), 429-432. https://doi.org/https://doi.org/10.1016/j.cirp.2017.04.013 [58] Yu, F., & Koltun, V. (2015). Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85105-
dc.description.abstract在現今蓬勃發展的半導體產業中,各大製造企業都已具備奈米級別的製程能力,並仍不斷將製造尺度向下突破,持續為品質管理帶來挑戰,因應這些挑戰,製造商在基本的先進製程控制(Advanced Process Control, APC)框架下,透過當代領先的機器學習技術(如深度學習)發展出預測型延伸功能模塊(如預測性維護、虛擬量測、良率預測等),來增強先進製程控制框架的控制力,然而,為了確保這些預測模型的精準度,常限縮這些模型的建置領域與適用範圍,帶來大量的模型需求,並提高了預測性模型建置與維護的成本。 另一方面,元學習(meta-learning)又稱為「學習如何學習」的研究領域,近年以小樣本元學習(few-shot meta-learning)的研究分支引領起一波研究動能復興,該分支著重透過元學習理念達到小樣本學習的目標,非常符合上述問題情境,卻未有相關的應用研究。因此,本研究旨在透過小樣本元學習的方法增強先進製程控制框架中深度學習預測模型的領域適應能力,期望強化整體控制系統的敏捷度與反應力,進而向更高程度的自動化智慧製造邁進。 本研究以先進製程控制框架中衍生的虛擬量測(Virtual Metrology, VM)模塊與小樣本元學習中的模型不可知元學習(Model-Agnostic Meta-Learning, MAML)方法為例,進行小樣本學習的實驗,測試以MAML降低虛擬量測模型資料需求的成效。具體來說,我們以RNN(傳統直觀)、CNN(當代熱門)與注意力機制(具發展潛力)三種神經網路結構為基底,分別選擇長短期記憶(LSTM)、時間卷積網路(TCN)與Transformer編碼器三者建構三種虛擬量測模型,並使用PHM Data Challenge 2016資料集進行配置調整、MAML訓練與小樣本下的新領域適應實驗,最後以預訓練(pretrain)模型遷移法為對照組做比較。 虛擬量測模型的建置結果,在三種基底的虛擬量測模型在基本的結構設計下,皆能勝過物理原理模型、統計特徵基底的模型與決策樹的集成模型,我們驗證了注意力機制與Transformer編碼器對於虛擬量測模型的發展潛力,並意外的發現該模型原始的位置編碼設計在本研究的個案中影響甚小,對此,我們提供虛擬量測不需要位置資訊與模型能從時序資料學習位置資訊兩種推論;而少樣本實驗的結果,所有MAML增強下的少樣本訓練表現些皆勝過預訓練模型遷移的對照組,且兩組間的差異皆呈現統計顯著性。 根據本研究的個案實驗結果,我們持續相信並建議小樣本元學習作為增強先進製程控制框架中預測模型的適應能力是適用且具發展性的,並且,以注意力機制為基底的虛擬量測模型尚有改善空間,也有達到當代最佳表現的潛能,未來透過可解釋性人工智慧技術(Explainable AI, XAI),有望更近一步放大注意力機制的價值,此外,位置編碼對Transformer編碼器在虛擬量測的影響也是個有趣的深入探討議題。zh_TW
dc.description.abstractIn the semiconductor manufacturing industry, most competitive companies now process at nano-scales, while still race to break through their bottom limits of process scales. As the ongoing competition continues to bring challenge to quality management, it encouraged scholars to incorporate state-of-the-art predictive information technologies (e.g., deep learning) into the Advanced Process Control (APC) framework. However, in practical situations, the training scope of these predictive models are often scaled down in exchange for better accuracy, resulting in more need for model units. Resources expended on these predictive models while setting up and maintenance have become a new type of cost for semiconductor manufacturing. On the other hand, meta-learning, also known as 'learn to learn', has recently been reviving through the branch of few-shot meta-learning, which focuses on designing meta-learning methods to achieve the capability of learning from very few examples. Given the fact that we found no related work of applying few-shot meta-learning methods to predictive models in the APC framework, this study aims to enhance the domain adaptability of deep learning based predictive models in the APC framework through few-shot meta-learning approach. By doing so, we hope to enhance the agility and responsiveness of the whole control system, in order to move towards higher levels of automated intelligent manufacturing. In our work, we conducted few-shot training experiments to observe the effectiveness of enhancing the adaptability of Virtual Metrology (VM) models through Model-Agnostic Meta-Learning (MAML) as a case study. We targeted three types of neural network bases, namely RNN, CNN, and attention mechanism, which each represents the “traditionally intuitive”, “recently popular”, and “potentially promising” choices of building VM models. From the three bases, we chose Long Short-term Memory (LSTM), Temporal Convolutional Network (TCN) and Transformer encoder, and constructed three different VM model structures. We conducted few-shot training experiments on the PHM Data Challenge 2016 dataset and compare the results under the initialization provided by MAML in contrast to the pretrain method. As a result, all three of our models outperformed physical models, statistical feature-based models, and decision tree ensemble models, showing qualification for our further experiments. We verified that attention mechanisms and the Transformer encoder are promising to approach Virtual Metrology, and surprisingly found that positional encoding had little effect on VM performance in our case. For this phenomenon, we provide two of our best conjectures, namely, attention-based model does not require position information in VM, or that models can learn position information form VM data. In our experimental results, MAML outperforms the pre-trained method as VM adaptability enhancement, while having statistically significant differences between the two methods. From our case study results, we continue to believe and suggest that few-shot meta-learning is promising for enhancing the adaptability of predictive models in the APC framework. In addition, we believe that attention-based Virtual Metrology have potential to reach state-of-the-art performance. The impact of positional encoding on Transformer encoders in VM would also be an interesting topic for further studies.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:43:57Z (GMT). No. of bitstreams: 1
U0001-1108202210352700.pdf: 5121474 bytes, checksum: 5e08cd52ee877f0235ab85cf0db81799 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents論文口試委員審定書...........................i 誌謝...................................................ii 中文摘要...........................................iii ABSTRACT........................................v 目錄.................................................vii 圖目錄...............................................ix 表目錄...............................................xi 第一章 緒論.......................................1 1.1 研究背景....................................1 1.2 研究動機...................................2 1.3 研究目的...................................4 1.4 論文架構...................................5 第二章 文獻探討................................6 2.1 虛擬量測...................................6 2.1.1 虛擬量測的發展背景.............6 2.1.2 虛擬測量的框架...................7 2.2 深度學習................................9 2.3 領域自適應...........................14 2.4 元學習.....................................17 第三章 研究方法...............................20 3.1 問題描述..................................20 3.2 研究流程..................................21 3.3 APC預測模型...........................22 3.3.1 長短期記憶模型..................24 3.3.2 時間卷積網路模型..............28 3.3.3 Transformer編碼器模型.....32 3.4 元學習模型..............................37 3.5 少樣本領域適應實驗設計..........41 第四章 個案研究結果........................44 4.1 資料集與個案背景介紹.............44 4.2 資料前處理..............................48 4.3 APC預測模型建置結果.............52 4.4 少樣本領域適應實驗結果..........60 第五章 結論與建議............................63 5.1 研究結論...................................63 5.2 貢獻與限制...............................64 5.3 未來研究方向...........................65 參考文獻...........................................67
dc.language.isozh-TW
dc.subject模型不可知元學習zh_TW
dc.subject虛擬量測zh_TW
dc.subject注意力機制zh_TW
dc.subject領域自適應zh_TW
dc.subject小樣本元學習zh_TW
dc.subject先進製程控制zh_TW
dc.subjectVirtual Metrologyen
dc.subjectModel-agnostic Meta-Learningen
dc.subjectdomain adaptationen
dc.subjectfew-shot meta-learningen
dc.subjectAdvanced Process Controlen
dc.subjectAttention mechanismen
dc.title以元學習增強先進製程控制中預測模型的領域適應力zh_TW
dc.titleEnhancing Domain Adaptability of APC Forecasting Models based on Meta-Learningen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee藍俊宏(Jakey Blue),楊曙榮(Sunny S. Yang)
dc.subject.keyword先進製程控制,小樣本元學習,領域自適應,虛擬量測,模型不可知元學習,注意力機制,zh_TW
dc.subject.keywordAdvanced Process Control,few-shot meta-learning,domain adaptation,Virtual Metrology,Model-agnostic Meta-Learning,Attention mechanism,en
dc.relation.page72
dc.identifier.doi10.6342/NTU202202285
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工業工程學研究所zh_TW
dc.date.embargo-lift2022-08-15-
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1108202210352700.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved