Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85100
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖文正zh_TW
dc.contributor.advisorWen-Cheng Liaoen
dc.contributor.author石易霖zh_TW
dc.contributor.authorYi-Lin Shihen
dc.date.accessioned2023-03-19T22:43:39Z-
dc.date.available2023-12-26-
dc.date.copyright2022-08-22-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] ACI Committee 209, 1982, “Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures,” Designing for Creep and Shrinkage in Concrete Structures, A Tribute to Adrian Pauw, SP-76, American Concrete Institute, Farmington Hills, MI, pp. 193-300.
[2] ACI Committee 209, 1992, “Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures (ACI 209R-92),” American Concrete Institute, Farmington Hills, MI, 47 pp.
[3] ACI Committee 232, 2002, “Use of Fly Ash in Concrete(ACI 232.R-96),” American Concrete Institute.
[4] Bažant, Z.P. and J.C. Chern, 1985, “Log-Double Power Law for Concrete Creep,” J. of ACI, Vol. 82, No. 5, Sept~Oct., pp. 665~675.
[5] Bažant, Z.P., 1988, “Mathematical Modeling of Creep and Shrinkage of Concrete,” John Wiley & Sons Ltd.
[6] Bažant, Z.P., and Baweja, S., 1995, “Creep and Shrinkage Prediction Model for Analysis and Design of Concrete Structures: Model B3,” Materials and Structures, Vol. 28, pp. 357-365, 415-430, 488-495.
[7] Bažant, Z.P., and Chern, J. C., 1985, "Concrete Creep at Variable Humidity: Constitutive Law and Mechanism", Materials and Structures, Vol. 18, No. 103, pp. 1-20.
[8] Bažant, Z.P., and S. T. Wu, 1973, “Dirichlet Series Creep Function for Aging Concrete,” J. Engrg. Mech. Div., ASTM. Vol. 99, pp. 367~387.
[9] Bažant, Z.P., and S. T. Wu, 1974, “Rate Type Creep Law of Concrete Based on Maxwell Chain,” Materials and Structures, RILEM, Vol. 7, pp. 45~60.
[10] Bažant, Z.P., ASCE, F., and Chern, J. C., 1987, “Stress-Induced Thermal and Shrinkage Strains in Concrete,” Journal of Engineering Mechanics, Vol. 113, pp.1493-1511.
[11] Bažant, Z.P., Hubler, M.H., and Wendner, R., 2015, “Model B4 for Creep, Drying Shrinkage and Autogenous Shrinkage of Normal and High-strength Concretes with Multi-decade Applicability,” RILEM Recommendation TC-242-MDC.
[12] Bažant, Z.P., L.Panula, 1978, “Practical prediction of time-dependent deformations of concrete”, Materials and Structures, Vol.11, Issue 5, pp.317-328.
[13] Brooks, J. J., Wainwright, P. J., and Boukendakji, M., 1992, “Influence of Salg Type and Replacement Level on Strength, Elasticity, Shrinkage, and Creep of Concrete,” ACI SP-132, pp.1325-1341.
[14] CEB,1999, “Structural Concrete-Textbook on Behaviour, Design and Performance. Updated Knowledge of the CEB/FIP Model Code 1990,” fib Bulletin 2,V.2, Federation Internationale du Beton, Lausanne ,Switzerland,pp.37-52.
[15] Chern, J.C., 1984, “Creep Law of Concrete, Its Uncertainty and Effects of Drying and Cracking,” PhD Dissertation (advised by Bažant, Z. P.), Northwestern University.
[16] Chern, J.C., Marchertas, A.H., and Bažant, Z.P., 1985, " Concrete Creep at Transient Temperature: Constitutive Law and Mechanism ", Proc. 8th Intern. Conf. on Struc. Mech. in Reactor Technology, Bressels, Belgium.
[17] Chin-Hsiung Loh & Tsu-Shiu Wu,1996, “Identification of Fei-Tsui arch dam from both ambient and seismic response data ” Solid Dynamics and Earthquake Engineering 15 (1996) 465-483
[18] Findley, W. N., J. S. Lai and K. Onaran, 1976, “Creep and Relaxation of Nonlinear Viscoelastic Materials,” North-Holland, Amsterdam, Nertherlands.
[19] Flugge, Wilkelm, 1975, “Viscoelasticity, 2nd ed.,” Springer-Verlag, Berlin.
[20] Goldgruber, M., Shahriari, S., & Zenz, G. (2013). Influence of Damping and Different Interaction Modelling on a High Arch Dam. Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics. Vienna.
[21] Hansen, T.C., and K.E.C., Nielsen, 1965, “Influence of aggregate properties on concrete shrinkage,” ACI, pp.783.
[22] ICOLD. (2010). Selecting Seismic Parameters for Large Dams Guidelines, Bulletin 72,Revision 5.3.1.
[23] ICOLD. (2013). Guidelines for Use of Numerical Models in Dam Engineering. Paris:Commission Internationale des Grands Barrages.
[24] Lane, R. O., and Best, J. F., 1982, “Properties and Use of Fly Ash in Portland Cement Concrete,” Concrete International: Design & Construction, V. 4, No. 7, July, pp. 81-92.
[25] Loman, W. R., 1940, “The Theory of Concrete Creep”, Proc, ASTM, Vol. 40, pp. 1082-1102.
[26] M.A. Lotfollahi Yaghin and M.A. Hesari, 2008. Dynamic Analysis of the Arch Concrete Dam under Earthquake Force with ABAQUS. Journal of Applied Sciences, 8: 2648-2658
[27] Mehta, P., and P. J.M. Monteiro, 1986, “Concrete Structure, Properties and Materials,” Prentice- Hall inc., Englewood-Cliffs, N.J., 1986.
[28] Naganathan, S., and Linda, T., 2013, “Effect of Fly Ash Fineness on the Performance of Cement Mortar,” Jordan Journal of Civil Engineering, Vol. 7, NO. 3, pp. 326-331.
[29] Neville, A.M., 1981, “Properties of Concrete, 3rd ed.,” Pitman Publishing, London.
[30] Neville, A.M., N.H. Dilger, and J. J. Brooks, 1983, “Creep of Plain and Structural Concrete,” Longman, England.
[31] Ross, A. D., 1983, “The Creep of Blast Furnace Slag Cement Concrete,” ACI Journal, Vol. 8, pp. 43-52.
Silica Fume, Slag and Other Mineral By-Products in Concrete, SP-79, American Concrete Institute, pp. 307-319.
[32] Tazawa, E., Yonekura, A., and Tanaka, S., 1989, “Drying Shrinkage and Creep of Concrete Containing Granulated Blast Furnace Slag,” ACI Special Publication, Vol. 114, pp. 1325-1344.
[33] Wagner,O.,1958,“Das Kriechen Unbewechen Betons,Deutscher Ausschuss fur Stahlbeton” No.131,Berlin,pp.74..
[34] Wendner, R., Hubler, M. H., and Bažant, Z.P., 2015, “Statistical Justification of Model B4 for Multi-Decade Concrete Creep Using Laboratory and Bridge Databases and Comparisons to Other Models,” Materials and Structures, Vol. 48, pp. 815-833.
[35] Westergaard, H. M. (1933). Water Pressure on Dams during Earthquakes. Transactions, ASCE,Vol. 98, 418-472..
[36] Yuan, R. L., and Cook, J. E., 1983, “Study of Class C Fly Ash Concrete,” Fly Ash,
[37] Zangar, C. N., & Haefeli, R. J. (1952). Electric Analog indicates Effect of Horizontal Earthquake Shocks on Dams. Journal of the engineering mechanics division, Vol. 22,No. 4
[38] 中興工程顧問股份有限公司,2004,「翡翠大壩變位分析及其監測警戒值訂定」。
[39] 中興工程顧問股份有限公司,2020,「翡翠水庫第五次定期安全評估綜合報告」。
[40] 台北翡翠水庫建設委員會,1987,「翡翠水庫工程竣工報告 第二冊」,第七章,pp.3-350。
[41] 台北翡翠水庫管理局,1990,「翡翠大壩監測警戒範圍及緊急狀況之研究」,B-2(e)。
[42] 台北翡翠水庫管理局,2021,「建立翡翠大壩變位模型及預測分析(翡秘勞字第110004號)總結報告」,(計畫主持人:廖文正)。
[43] 吳演聲,2007,「翡翠大壩變位監測警戒值及其視窗化展示查詢系統」,技術學刊,中興工程顧問股份有限公司水利及海洋工程部。
[44] 林焜烽,1990,「翡翠大壩壩體長期應力應變之基本黏彈性分析」,碩士論文(指導教授:陳振川),國立台灣大學土木工程學研究所。
[45] 紀俊成,2007,「混凝土拱壩之識別系統與結構動力分析」,碩士論文(指導教授:王彥博、李建良),國立交通大學土木工程學研究所,新竹。
[46] 高健章,1982,「壩工混凝土之熱學性質之研究」,臺灣營建研究中心研究計畫工作報告書。
[47] 高健章、陳振川,1987,「翡翠大壩混凝土潛變試驗報告」,臺灣大學, NTUCE-NAT-7606,p28。
[48] 高健章、陳振川,1988,「翡翠大壩混凝土潛變試驗報告:潛變回復」,臺灣大學土木工程學研究所,p54。
[49] 高健鈞,2021,「應用台灣收縮與潛變預測公式於長跨距預力混凝土橋梁及拱壩壩體長期分析」,碩士論文(指導教授:廖文正),國立臺灣大學土木工程學研究所,臺北。
[50] 許玓君,2018,「翡翠大壩壩體長期變形趨勢研究」,碩士論文(指導教授:陳振川),國立臺灣大學土木工程學研究所。
[51] 陳利明,1996,「混凝土壩耐震設計觀念」,中興工程,第51期,pp.75-97
[52] 陳振川,1987,「混凝土力學行為-強度」,混凝土施工技術研討會論文集,pp. 81-110。
[53] 陳振川,民國82年「結構物長期監測系統建立-以翡翠水庫混凝土拱壩為例」,結構工程,第八卷,第一期,第63-84頁。
[54] 陳振川、高健章、詹穎雯、湯豐銘,1987,「不同環境溫、濕度對高爐水泥與卜特蘭水泥混凝土強度影響與變形之研究」,研究報告,財團法人臺灣營建研究中心。
[55] 陳振川、高健章等,民國79年「拱埧混凝土長期潛變及其預測」,國立台灣大學工程學刊,第四十八期,第1-19頁。
[56] 陳振川、張行健,民國77年「乾燥、飽和濕度與高溫等不同環境下之混凝土壓力潛變」,土木水利季刊,第十五卷,第三期,第47-53頁。
[57] 陳振川、黃韶成等,民國81年「翡翠大壩即時分析長期監視系統之建立」,第一屆結構工程研討會論文集(II),南投溪頭,第193-202頁。
[58] 陳振川、詹穎雯,1986,「添加飛灰與高爐石粉混凝土之體積穩定探討」,高爐石與飛灰資源再混凝土工程上應用研討會,pp. 215-243。
[59] 陸景文、陳振川、張國鎮、詹穎雯,2001,「臺灣地區溫度對混凝土橋樑影響之監測與分析」,中國土木水利工程學刊,第13卷,第3期,pp.593-604。
[60] 黃禾程,2020,「以資料庫迴歸臺灣混凝土收縮與潛變預測模型並應用於預力橋梁長期變位分析」,碩士論文(指導教授:廖文正),國立臺灣大學土木工程學研究所,臺北。
[61] 黃裔炎,1985,「大壩混凝土之潛變試驗研究」,碩士論文(指導教授:高健章),國立台灣大學土木工程學研究所,台北。
[62] 黃韶程,1992,「拱壩安全預警系統之建立-以翡翠大壩為例」,碩士論文(指導教授:陳振川),國立台灣大學土木工程學研究所,台北。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85100-
dc.description.abstract翡翠水庫為行政院核定之國家一級關鍵基礎設施,其功能性與安全性維繫整個大臺北地區600萬民眾生命財產安全,自1987年至今已經營運33年。翡翠水庫除了在興建時結合各界之專業規劃、設計與完善良好的施工品質外,也在運作期間,建置完整大壩安全監測系統,並定期辦理水庫安全評估來確保大壩安全。
本研究目的係於翡翠水庫已臻完善的安全管理基礎上,針對其大壩變位預測及現有變位警戒值之安全評析,建立可以模擬預測大壩變位的有限元素模型。此模型主要考慮外在因素(氣溫歷時、水位變化)與內在因素(潛變效應),並利用此模型,改善其現有的變位警戒值,確認翡翠大壩之長期變位是否有安全上疑慮,作為未來翡翠水庫於安全管理上的參考。
本研究分析結果顯示,溫度效應係因壩體熱漲冷縮引致大壩主要向上游側變位;而水位變化效應係因大壩受水壓力作用影響,其變位方向向下游側變位;潛變效應則由於水位加載之因素也同樣往下游側變位。另透過累積變位的比重計算至2020年,觀察壩體監測儀器中變位幅度最大之處,於中央高程172.5m之分析結果顯示,整體趨勢係溫度隨時間比重下降,水位隨時間比重接近持平,潛變則隨時間比重上升,潛變造成變位所佔比例維持在24%;溫度造成變位所佔比例約50%;水位造成變位所佔比例約26%。
對於大壩長期變位預測,本研究採用臺灣大學土木工程系發表之臺灣本土化潛變模型Model B4 TW(2020),搭配翡翠水庫興建時之實際潛變試驗資料,建立出屬於翡翠大壩之潛變預測公式,於中央高程172.5m之分析結果顯示,潛變變位從2020年15.73mm到2050年增加至18.346mm,30年增加的幅度約16%,2050年18.346mm 到2100年增加至21.04mm, 50年增加幅度約15%,潛變成長幅度已逐漸趨緩,且整體變位皆於警戒值範圍內,另經大壩長期應力與應變分析結果,潛變鬆弛效應造成的應變增量,並無造成大壩內部明顯應力重分配。整體而言,大壩內部應力與應變皆在安全範圍內。
過去對於大壩變位警戒值之訂定,著重於大壩受溫度及水位變化作用之影響,未完善考慮潛變效應對大壩變位之影響,故本研究優化過去大壩變位警戒值,分別考慮溫度、水位、潛變對大壩所造成之變位,並且將潛變所造成之變位於每十年進行更新,並針對現今警戒值查詢系統進行警戒值表格設定,對於翡翠大壩長期變位之預測,能考慮潛變效應之累積變位,更反映真實大壩變位行為。
大壩動力分析中,考慮壩體混凝土的動態彈性模數與基礎岩盤的動態有效變形模數,並利用Zangar 等效附加質量元素來模擬上游面的動態水壓力與壩體相互作用之影響,其模型能有效的反應真實結構行為。並以不同條件之靜力分析結果作為動力分析之初始應力,考慮潛變效應對大壩動力分析所造成的影響,在MDE地震力作用下,壩體變位狀況以及應力分布情形,提供在大壩安全管理下之參考。
關鍵字 : 混凝土、潛變、拱壩、有限元素分析、地震力。
zh_TW
dc.description.abstractThe Feitsui Reservoir is a first-level national infrastructure approved by the Executive Yuan. The functionality of Feitsui Reservoir supports the safety of the lives and property of 6 million people in the Taipei metropolitan area. It has been in operation for 33 years since 1987. In addition to integrating professional planning and design in the construction of the Feitsui Reservoir along with high construction quality, a complete dam safety monitoring system has also been implemented, conducting regular reservoir safety assessments to ensure the safety of the dam.
The objective of this study project is to predict the displacement of the dam based on the safety management of the Feitsui Reservoir by establishing a finite element model. This model shall mainly consider external factors (temperature and water levels) and internal factors (creep). The existing displacement warning value for safe management can be further improved.
The analysis results of this study show that the temperature effect is due to the thermal expansion and contraction of the dam body, which causes the dam to be displaced mainly to the upstream side; and the water level change effect is that the dam is affected by the water pressure, and its displacement direction is displaced to the downstream side; The creep effect is also displaced to the downstream side due to the loading of the water level. In addition, through the calculation of the proportion of cumulative displacement until 2020, the largest displacement in the monitoring instrument of the dam body is observed. The analysis results at the central elevation of 172.5m show that the overall trend is that the proportion of temperature decreases with time, and the proportion of water level is close to the same with time. , the proportion of creep increases with time, and the proportion of displacement caused by creep remains at 24%; the proportion of displacement caused by temperature is about 50%; the proportion of displacement caused by water level is about 26%.
For the prediction of long-term dam displacement up to 2100 AD, this research uses the localized creep model named Model B4 TW (2020) published by the Department of Civil Engineering of National Taiwan University. Model B4 TW (2020) combines the actual creep test data at the time of the construction of the Feitsui Reservoir and establishes a creep prediction formula belonging to the Feitsui Reservoir. The analysis result of the central elevation of 172.5 m shows that the creep displacement will grow from 15.73mm in 2020 to 18.346mm in 2050, an increase of about 15% in 30 years; the creep displacement will increase from 18.346mm in 2050 to 21.04mm in 2100, which is about 15% in the 50 years. The rate of growth of the creep displacement has gradually slowed down and the total displacement is within the range of warning values. Furthermore, the results of the dam long-term stress and strain analysis show that the strain increases due to the creeping relaxation effect, but it does not result in an obvious redistribution of the internal stress of the dam. In general, the internal stress and deformation of the dam are within a safe range.
In the past, the setting of the warning value for dam displacement focused on the influence of changes in temperature and water level on the dam, and the influence of creep effect on dam displacement was not fully considered. Therefore, this research optimizes the warning values from the past considering the displacement caused by temperature, water level, and creep, respectively. Furthermore, this research also updates the changes caused by the creep every ten years and provides the warning value table for the current warning value query system. For the prediction of the long-term displacement of Feitsui Reservoir, the cumulative displacement of the creep effect can be well considered, which reflects the more real displacement behavior of the dam.
In the dynamic analysis of the dam, the dynamic elastic modulus of the dam body concrete and the dynamic effective deformation modulus of the foundation rock are considered, and the Zangar equivalent additional mass element is used to simulate the influence of the dynamic water pressure on the upstream surface and the interaction of the dam body. The model can effectively reflect the real structural behavior. The static analysis results under different conditions are used as the initial stress of the dynamic analysis, and the influence of creep effect on the dynamic analysis of the dam is considered. Under the action of MDE seismic force, the dam body deformation and stress distribution provide a reference for dam safety management.
Keywords: Concrete, Creep, Arch dam, Finite element analysis, Seismic force
en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:43:39Z (GMT). No. of bitstreams: 1
U0001-0908202217572600.pdf: 22818507 bytes, checksum: 1144fc3719f55d9c288931f6b467ece0 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 i
摘要 iii
ABSTRACT v
目錄 ix
表目錄 xiii
圖目錄 xix
第一章、 緒論 1
1.1 研究動機與目的 1
1.2 研究內容 2
1.3 研究流程圖 5
第二章、 文獻回顧 7
2.1 混凝土之潛變變形 7
2.1.1 混凝土潛變變形機制 7
2.1.2 影響混凝土潛變之因素 10
2.2 潛變行為之材料模型設定 17
2.2.1 機械模式的選定 17
2.2.2 材料潛變與鬆弛性質 18
2.2.3 黏彈性材料組成律與機械模式參數 18
2.2.4 潛變問題逐步積分流程 21
2.3 潛變試驗 22
2.3.1 潛變試驗材料 22
2.3.2 潛變養護環境 25
2.3.3 施載齡期 25
2.3.4 試驗方法 25
2.3.5 潛變函數 29
2.4 混凝土熱傳性質 30
2.5 Model B4 TW(2020)潛變預測公式 33
2.5.1 Model B4TW (2020) 潛變建議公式 33
2.5.2 Model B4TW (2020) 基本潛變預測式分析結果比較 38
2.5.3 Model B4TW (2020) 總潛變預測式分析結果比較 39
2.6 翡翠水庫靜力分析之相關研究 42
2.6.1 大壩壩體變位之相關研究 42
2.6.2 水位變化、潛變效應與溫度效應對長期變位趨勢之影響 43
2.7 翡翠水庫動力分析之相關研究 45
2.7.1 翡翠水庫之系統識別分析 45
2.7.2 壩體與庫水之互制作用 45
2.7.3 水庫設計地震 47
第三章、 翡翠大壩之靜力分析 53
3.1 拱壩研究範圍 53
3.2 ABAQUS有限元素模型之建立 61
3.3 材料參數 62
3.3.1 壩體混凝土之彈性模數 62
3.3.2 黏彈性材料參數設定 62
3.3.3 壩體熱學性質參數設定 65
3.4 ABAQUS模型驗證 65
3.4.1 混凝土潛變行為 65
3.5 ABAQUS mesh收斂性探討 72
3.6 翡翠水庫壩體變位量測機制 79
3.7 各影響因素對壩體長期變位趨勢之探討 85
3.7.1 溫度變位分析 86
3.7.2 水位變位分析 101
3.7.3 潛變變位分析 104
3.8 拱壩總和變位分析 106
3.9 上部結構修正 110
3.10 大壩總變位誤差分析 115
3.11 變位因素影響比例探討 120
3.11.1 高程172.5公尺分析結果 120
3.11.2 高程150公尺分析結果 124
3.11.3 高程115公尺分析結果 127
3.11.4 高程90公尺分析結果 129
3.11.5 各高程累積變位比重比較 131
3.12 壩體應力應變分析 133
第四章、 大壩長期預測分析 147
4.1 潛變柔度函數修正 147
4.2 大壩長期變位分析 151
4.3 大壩長期應力應變分析 154
第五章、 大壩變位警戒值訂定與運用探討 165
5.1 大壩分塊位置介紹 165
5.2 大壩警戒值訂定 167
5.2.1 溫度變位設定 170
5.2.2 水位變位設定 177
5.2.1 潛變變位設定 181
5.2.2 警戒值表格成果 185
5.3 警戒值更新探討 189
5.4 大壩極端環境探討 196
5.4.1 低溫環境及高水位分析 196
5.4.2 高溫環境及低水位分析 199
第六章、 大壩動力分析 203
6.1 動力分析模型建立 203
6.1.1 基礎岩盤設置 203
6.1.2 庫水設定 203
6.1.3 壩體-基礎岩盤模型接觸 204
6.1.4 材料參數設定 204
6.2 模態分析 207
6.3 阻尼之設定 211
6.4 地震歷時反應分析 215
6.4.1 靜力分析之設定 215
6.4.2 壩體動力分析 216
6.5 分析結果 222
6.5.1 位移檢核 222
6.5.2 壩體應力檢核 223
第七章、 結論與建議 235
7.1 結論 235
7.2 建議 238
附錄A 各分塊年度潛變變位 239
附錄B 各分塊年度警戒值 269
參考文獻 295
-
dc.language.isozh_TW-
dc.subject潛變zh_TW
dc.subject地震力zh_TW
dc.subject有限元素分析zh_TW
dc.subject拱壩zh_TW
dc.subject潛變zh_TW
dc.subject混凝土zh_TW
dc.subject地震力zh_TW
dc.subject有限元素分析zh_TW
dc.subject拱壩zh_TW
dc.subject混凝土zh_TW
dc.subjectFinite element analysisen
dc.subjectConcreteen
dc.subjectCreepen
dc.subjectArch damen
dc.subjectSeismic forceen
dc.subjectCreepen
dc.subjectConcreteen
dc.subjectSeismic forceen
dc.subjectFinite element analysisen
dc.subjectArch damen
dc.title考量潛變效應之拱壩長期變位與動力行為分析研究zh_TW
dc.titleResearch on long-term deformation and dynamic behavior of arch dam with consideration of creep effecten
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee詹穎雯;張書瑋;陳振川zh_TW
dc.contributor.oralexamcommitteeYin-Wen Chan;Shu-Wei Chang;Jenn-Chuan Chernen
dc.subject.keyword混凝土,潛變,拱壩,有限元素分析,地震力,zh_TW
dc.subject.keywordConcrete,Creep,Arch dam,Finite element analysis,Seismic force,en
dc.relation.page300-
dc.identifier.doi10.6342/NTU202202220-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2023-08-31-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
22.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved