請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85091完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝馬利歐(Mario Hofmann) | |
| dc.contributor.author | Yeh-Chia Chang | en |
| dc.contributor.author | 張晏嘉 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:43:04Z | - |
| dc.date.copyright | 2022-08-18 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-11 | |
| dc.identifier.citation | [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306(5696):666–669, 2004. [2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov. Two-dimensional gas of massless dirac fermions in graphene. Nature, 438:197–200, 2005. [3] Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, and James Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887):385–388, 2008. [4] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau. Superior thermal conductivity of single-layer graphene. Nano Lett, 8:902, 2008. [5] Hua-Ding Song, Peng-Fei Zhu, Jingzhi Fang, Ziqi Zhou, Huai Yang, Kaiyou Wang, Jingbo Li, Dapeng Yu, Zhongming Wei, and Zhi-Min Liao. Anomalous hall effect in graphene coupled to a layered magnetic semiconductor. Phys. Rev. B, 103:125304, Mar 2021. [6] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim. Room-temperature quantum hall effect in graphene. Science, 315(5817):1379–1379, 2007. [7] N Mounet, M Gibertini, and P. Schwaller. Two-dimensional materials from highthroughput computational exfoliation of experimentally known compound. Nature Nanotech, 13:264–252, 2018. [8] Yang Huang Takeshi Terao Masanori Mitome Chengchun Tang Dmitri Golberg, Yoshio Bando and Chunyi Zhi. Boron nitride nanotubes and nanosheets. ACS Nano, 4:2979–2993, 2010. [9] Soumyabrata Roy, Xiang Zhang, Anand B. Puthirath, et al. Advanced Materials, 33(44):2101589, 2021. [10] Kalantar-Zadeh K. Wang, Q. and A. Kis. Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nature Nanotech, 7:699–712, 2012. [11] J.A. Wilson and A.D. Yoffe. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Advances in Physics, pages 193–335, 1969. [12] Biaohua Chen Qiu Jin, Ning Liu and Donghai Mei. Mechanisms of semiconducting 2h to metallic 1t phase transition in two-dimensional mos2 nanosheets. The Journal of Physical Chemistry, 122:28215–28224, 2018. [13] Valeria Nicolosi, Manish Chhowalla, Mercouri G. Kanatzidis, Michael S. Strano, and Jonathan N. Coleman. Liquid exfoliation of layered materials. Science, 340(6139):1226419, 2013. [14] K. Paton, E. Varrla, C. Backes, et al. Scalable production of large quantities of defectfree few-layer graphene by shear exfoliation in liquids. Nature Matter, 13:624–630, 2014. [15] Herbert Kroemer. Nobel lecture: Quasielectric fields and band offsets: teaching electrons new tricks. Rev. Mod. Phys., 73:783–793, Oct 2001. [16] L. Esaki and R. Tsu. Superlattice and negative differential conductivity in semiconductors. IBM Journal of Research and Development, 14(1):61–65, 1970. [17] A. Chaves, J. G. Azadani, H. Alsalman, et al. Bandgap engineering of twodimensional semiconductor materials. npj 2D Mater Appl, 4, 2020. [18] Y. Cao, V. Fatemi, S. Fang, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556:43–50, 2018. [19] Szabolcs Fekete, Alain Beck, Jean-Luc Veuthey, and Davy Guillarme. Theory and practice of size exclusion chromatography for the analysis of protein aggregates. Journal of Pharmaceutical and Biomedical Analysis, 101:161–173, 2014. JPBA Reviews 2014. [20] Wu Zhou, Jie Zhang, Lili Liu, and Xiaoshu Cai. Ultrafast image-based dynamic light scattering for nanoparticle sizing. Review of Scientific Instruments, 86(11):115107, 2015. [21] Michio Tokuyama and Hazime Mori. Statistical-Mechanical Theory of Random Frequency Modulations and Generalized Brownian Motions*). Progress of Theoretical Physics, 55(2):411–429, 02 1976. [22] Erika Eiser. Dynamic Light Scattering, chapter 5, pages 233–282. John Wiley Sons, Ltd, 2014. [23] A. V. Malm and J. C. W. Corbett. Improved dynamic light scattering using an adaptive and statistically driven time resolved treatment of correlation data. Sci Rep, 9:13519, 2019. [24] Doriano Brogioli, Fabrizio Croccolo, Valeria Cassina, Domenico Salerno, and Francesco Mantegazza. Nano-particle characterization by using exposure time dependent spectrum and scattering in the near field methods: how to get fast dynamics with low-speed ccd camera. Opt. Express, 16:20272–20282, 2008. [25] Oh J, Ortiz de Zárate JM, Sengers JV, and Ahlers G. Dynamics of fluctuations in a fluid below the onset of Rayleigh-Bénard convection. Phys Rev E Stat Nonlin Soft Matter Phys., 2004. [26] A. van der Schaaf and J.H. van Hateren. Modelling the power spectra of natural images: Statistics and information. Vision Research, 36(17):2759–2770, 1996. [27] Alfred B. Leung, Kwang I. Suh, and Rafat R. Ansari. Particle-size and velocity measurements in flowing conditions using dynamic light scattering. Appl. Opt., 45(10):2186–2190, Apr 2006. [28] Nicole Meulendijks, Renz Van Ee, Ralph Stevens, Maurice Mourad, Marcel Verheijen, Nils Kambly, Ricardo Armenta, and Pascal Buskens. Flow cell coupled dynamic light scattering for real-time monitoring of nanoparticle size during liquid phase bottom-up synthesis. Applied Sciences, 8(1), 2018. [29] D. Brogioli, D. Salerno, V. Cassina, and F. Mantegazza. Nanoparticle characterization by using tilted laser microscopy: back scattering measurement in near field. Opt. Express, 17:15431–15448, 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85091 | - |
| dc.description.abstract | 二維材料已在電子學、光學和生命科學等眾多應用領域中展現出巨大的前景。為了瞭解它們的潛力,需要一種強大且可擴增的生產方法。液相剝離法讓我們在二維材料製造中可調節橫向尺寸和厚度。然而,由於特徵方面的挑戰,使我們對潛在機制和參數影響的理解有限。我們在這裡利用近場動態光散射技術對溶液中二維材料的形態進行原位測量。我們實現了一種曝光時間相關光譜的演算法,該演算法使用高速感光耦合元件分析光斑快速變化中對角度的依賴性。通過提取相關的時間常數,提供了對粒徑的估計。實驗結果已用標準粒徑校準,顯示出良好的預測能力。我們將該系統應用於表徵各種流體動力學條件下的二維材料。 | zh_TW |
| dc.description.abstract | Two-dimensional materials have shown great promise towards a multitude of applications, such as electronics, photonics, and life sciences. To realize their potential, a powerful and scalable production method is required. Liquid exfoliation allows fabrication of 2D materials with adjustable lateral dimension and thickness. However, limited understanding of the underlying mechanism and the impact of process parameters exists due to challenges in characterization. We here utilize a nearfield Dynamic Light Scattering (DLS) technique to conduct in-situ measurements of the 2D materials morphology within solution. We implement an Exposure Time Dependent Spectrum (ETDS) algorithm that analyzes the angle dependence in the fast variation of light speckles using a high-speed CCD. Through extraction of the correlated time constant, a robust estimate of the particle size is produced. The experimental DLS results were calibrated with particle size standards and show good predicting ability. We apply the system to characterizing 2D materials in various fluid dynamic conditions. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:43:04Z (GMT). No. of bitstreams: 1 U0001-1008202221015300.pdf: 4635169 bytes, checksum: ea01168ad8527d06b719ed4101abb94e (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Acknowledgements i 摘要ii Abstract iii Contents v List of Figures vii Chapter 1 Introduction 1 1.1 2D material 1 1.2 Synthesis and application 2 1.3 Shear Exfoliation 4 1.4 Size dependent 6 1.5 Particle sizing method 7 1.6 Dynamic Light Scattering 9 1.6.1 Brownian motion 9 1.6.2 Setup of DLS 12 1.6.3 Autocorrelation function 13 1.6.4 Scattered intensity 20 1.7 Flow 21 Chapter 2 Method 22 2.1 Exposure Time Dependent Spectrum 22 2.1.1 Setup of ETDS 23 2.1.2 Near Field 24 2.1.3 Fourier Transform 27 2.1.4 Image Power Spectrum 31 2.1.5 Wiener-Khinchin Theorem 34 2.2 Image processing 36 Chapter 3 Result 39 3.1 Image processing 39 3.1.1 Subtracting the optical background 39 3.1.2 Image power spectrum (IPS) 40 3.1.3 S vs Exposure time 41 3.1.4 Different 3D wave vector 41 3.1.5 Tau vs Q 43 3.1.6 Calibration 43 3.2 Flow 45 Chapter 4 Conclusion and Future Work 49 References 51 | |
| dc.language.iso | en | |
| dc.subject | 流動 | zh_TW |
| dc.subject | 動態光散射 | zh_TW |
| dc.subject | 粒徑分析 | zh_TW |
| dc.subject | 曝光時間相關光譜 | zh_TW |
| dc.subject | 圖像功率光譜 | zh_TW |
| dc.subject | Flowing effect iv | en |
| dc.subject | Particle sizing | en |
| dc.subject | Dynamic light scattering | en |
| dc.subject | Exposure Time Dependent Spectrum | en |
| dc.subject | Image power spectrum | en |
| dc.title | 動態光散射研究溶液中二維材料之行為 | zh_TW |
| dc.title | Dynamic Light Scattering for the Investigation of 2D Materials Behavior in Solution | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝雅萍(Ya-Ping Hsieh),陳永芳(Yang-Fang Chen) | |
| dc.subject.keyword | 粒徑分析,動態光散射,曝光時間相關光譜,圖像功率光譜,流動, | zh_TW |
| dc.subject.keyword | Particle sizing,Dynamic light scattering,Exposure Time Dependent Spectrum,Image power spectrum,Flowing effect iv, | en |
| dc.relation.page | 55 | |
| dc.identifier.doi | 10.6342/NTU202202272 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-12 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-18 | - |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1008202221015300.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
