請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85084完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡志偉(Chi-Wei Tsai) | |
| dc.contributor.author | Guan Jie Phang | en |
| dc.contributor.author | 彭冠傑 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:42:37Z | - |
| dc.date.copyright | 2022-08-19 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-12 | |
| dc.identifier.citation | A’Bear AD, Jones TH, Boddy L. 2014. Size matters: what have we learnt from microcosm studies of decomposer fungus–invertebrate interactions? Soil Biol Biochem 78: 274-283. Doi: 10.1016/j.soilbio.2014.08.009. Avise JC. 2004. Molecular markers, natural history and evolution. 2nd edition. Sunderland: Sinauer Associates. 669 pp. Baum DA, Donoghue MJ. 1995. Choosing among alternative 'phylogenetic' species concepts. Syst Bot 20(4):560–573. Birkemoe T, Jacobsen RM, Sverdrup-Thygeson A, Biedermann, PH. 2018. Insect-fungus interactions in dead wood systems. pp 377–428. In: Ulyshen M (eds). Saproxylic insects: Diversity, Ecology and Conservation. Zoological Monographs 1. Springer, Cham. doi: 10.1007/978-3-319-75937-1_12. Boggs JS, Wang W-C, Lewis FS, Chen J-C. 1979. Sediment properties and water characteristics of the Taiwan shelf and slope. Acta Oceanogr Taiwan 10: 10-49. Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, Heled J, Jones G, Kühnert D, De Maio N, Matschiner M. 2019. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol 15(4): 1–28. doi: 10.1371/journal.pcbi.1006650. Bourguignon T, Šobotník J, Hanus R, Krasulová J, Vrkoslav V, Cvačka J, Roisin Y. 2013. Delineating species boundaries using an iterative taxonomic approach: the case of soldierless termites (Isoptera, Termitidae, Apicotermitinae). Mol Phylogenet Evol 69(3): 694–703. doi: 10.1016/j.ympev.2013.07.007. Boyle WW. 1956. A revision of the Erotylidae of America north of Mexico (Coleoptera). Bull Am Mus Nat Hist 110: 61–172. Boyle WW. 1963. Dacne picta Crotch in Hawaii, with notes on morphology and mode of entry from Japan (Coleoptera: Erotylidae). Proc Hawaii Entomol Soc 18(2): 235–236. Brower AVZ. 1994. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA Evolution, Proc Natl Acad Sci U S A 3(2): 159–174. doi: 10.1006/mpev.1994.1018. Chen CC, Chen CY, Wu SH. 2021. Species diversity, taxonomy and multi-gene phylogeny of phlebioid clade (Phanerochaetaceae, Irpicaceae, Meruliaceae) of Polyporales. Fungal Divers 111(1): 337–442. doi: 10.1007/s13225-021-00490-w. Chen RT, Tsai CF, Tzeng WN. 2009. Freshwater prawns (Macrobrachium bate, 1868) of Taiwan with special references to their biogeographical origins and dispersion routes. J Crustac Biol 29: 232–244. doi: 10.1651/08-3072.1. Chiu YW, Bor H, Kuo PH, Hsu KC, Tan MS, Wang WK. 2017. Origins of Semisulcospira libertina (Gastropoda: Semisulcospiridae) in Taiwan. Mitochondrial DNA A: DNA Mapp Seq Anal 28(4): 518–525. doi: 10.3109/24701394.2016.1149823. Chûjô M, 1967. The Erotylidae (Col.) collected by the Noona Dan expedition in the Phillippines and Bismarck Islands. Studies on the erotylid-beetles (18). Entomologiske Meddelelser 35: 181–193. Chûjô M. 1969. Erotylidae (Insecta: Coleoptera). Fauna Japonica. Tokyo: Academic Press of Japan. 316 pp. Chûjô M, Chûjô Mt. 1989. A catalog of the Erotylidae (Insecta, Coleoptera) from the old world (excl. the Ethiopian Region). Esakia 28: 75–96. Chûjô M, Chûjô Mt. 1990. A catalog of the Erotylidae (Insecta, Coleoptera) from the old world (excl. the Ethiopian Region) III. Esakia 29: 1–67. Chung GF. 2011. Management of Ganoderma diseases in oil palm plantations. The Planter 87: 325–339. Colgan DJ, McLauchlan A, Wilson GDF, Livingston SP, Edgecombe GD, Macaranas J, Cassis G, Gray MR. 1998. Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Aust J Zool 46: 419–437. Crowther TW, Boddy L, Jones TH. 2011a. Outcomes of fungal interactions are determined by soil invertebrate grazers. Ecol Lett 14(11): 1134–1142. Crowther TW, Boddy L, Jones TH. 2011b. Species-specific effects of soil fauna on fungal foraging and decomposition. Oecologia 167(2): 535–545. Crowther T, Boddy L, Jones TH. 2012. Functional and ecological consequences of saprotrophic fungus–grazer interactions. ISME J 6: 1992–2001. doi: 10.1038/ismej.2012.53. Damaška AF, Konstantinov A, Lee C, Ruan Y, Mohagan DJ, Fikáček M. 2021. Molecular phylogeny of moss‐inhabiting flea beetles from the Chabria group ( Coleoptera: Chrysomelidae: Alticini ) reveals multiple colonizations and radiations in Taiwan. Syst Entomol 46(4): 915–925. doi:10.1111/syen.12502. Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: More models, new heuristics and parallel computing. Nat Methods 9(8): 772. doi: 10.1038/nmeth.2109. Dasgupta J, Hegde VD. 2012. Record of pleasing fungus beetles (Coleoptera: Erotylidae) from Tripura state, India. Rec zool Surv India 112(3): 113–115. Dayrat B. 2005. Towards integrative taxonomy, Biol J Linn Soc 85(3): 407-417. doi: 10.1111/j.1095-8312.2005.00503.x. Deelder CL. 1942. Revision of the Erotylidae (Coleoptera) of the Leiden Museum. Zoologische Mededeelingen, Leiden 24(1–2): 49–115. Després L. 2019. One, two or more species? Mitonuclear discordance and species delimitation. Mol Ecol 28(17): 3845–3847. doi: 10.1111/mec.15211. Dubois A. 2003. The relationships between taxonomy and conservation biology in the century of extinctions. Comptes rendus biologies 326: 9–21. Edwards SV, Liu L, Pearl DK. 2007. High-resolution species trees without concatenation. Proc Natl Acad Sci USA 104(14): 5936–5941. doi: 10.1073/pnas.0607004104. Eldredge N, Cracraft J.1980. Phylogenetic Patterns and the Evolutionary Process. Method and Theory in Comparative Biology. 349 pp. New York: Columbia University Press. Elton CS. 1966. The pattern of animal communities. 432 pp. Dordrecht: Springer. doi: 10.1007/978-94-009-5872-2. Ezard T, Fujisawa T, Barraclough TG. 2021. splits: SPecies' LImits by Threshold Statistics. R package version 1.0-20/r56. https://R-Forge.R-project.org/projects/splits/. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3(5):294–299. Fujisawa T, Barraclough TG. 2013. Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Syst Biol 62(5):707–724. doi: 10.1093/sysbio/syt033. Gaitán-Hernández R, Salmones D, Merlo RP, Mata G. 2006. Manual práctico del cultivo de setas – Aislamiento, siembra y producción. Instituto de Ecología, A.C. Xalapa, Ver., México. 56 pp. Gerlach J, Samways M, Pryke J. 2013. Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J Insect Conserv 17: 831–850. doi: 10.1007/s10841-013-9565-9. Gimmel ML, Ferro ML. 2018. General overview of saproxylic Coleoptera. pp 51–128. In: Ulyshen M (eds). Saproxylic insects: Diversity, Ecology and Conservation. Zoological Monographs 1. Springer, Cham. doi: 10.1007/978-3-319-75937-1_2. Goodrich MA, Skelley PE. 1991. The pleasing fungus beetles of Illinois (Coleoptera: Erotylidae). I. The Dacninae. Trans Ill State Acad Sci 84(3-4): 155–172. Goodrich MA, Skelley PE. 1993. The Pleasing Fungus Beetles of Illinois (Coleoptera: Erotylidae) Part II. Triplacinae. Triplax and Ischyrus. Trans Ill State Acad Sci 86(3-4): 153–171. Goodrich MA, Skelley PE 1994. Fungal host records for species of Tritoma (Coleoptera: Erotylidae) of America north of Mexico. Entomol News 105(5): 289–294. Goodrich MA, Skelley PE 1995. The pleasing fungus beetles of Illinois (Coleoptera: Erotylidae) Part III. Triplacinae. The genus Tritoma. Trans Ill State Acad Sci 88(3-4): 145–168. Graves RC. 1965. Observations on the ecology, behavior and life cycle of the fungus-feeding beetle, Cypherotylus californicus, with a description of the pupa (Coleoptera: Erotylidae). Coleopter Bull 19(4): 117–122. Gnaneswaran G, Wijayagunasekara HNP. 1999. Survey and identification of insect pests of oyster mushroom (Pleurotus ostreatus) cultures in central province of Sri Lanka. Trop Agr Res Ext 2(1): 21–23. Goh YK, Teo TM, Marzuki NF, Tan SS, Subramanian R, Hasim I, Goh KJ. 2016. First record of entomopathogenic Beauveria bassiana (Ascomycota: Hypocreales) on pleasing fungus beetle Episcapha quadrimacula (Coleoptera: Erotylidae) in Malaysia. J Entomol Acarol Res 48(3): 314–316. doi:10.4081/jear.2016.5492. Guevara R, Rayner ADM, Reynolds SE. 2000. Effects of fungivory by two specialist ciid beetles (Octotemnus glabriculus and Cis boleti) on the reproductive fitness of their host fungus, Coriolus versicolor. New Phytol 145(1):137–144. doi: 10.1046/j.1469-8137.2000.00552.x. Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by Maximum Likelihood. Syst Biol 52: 696–704. doi: 10.1080/10635150390235520. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst Biol 59(3): 307–321. doi: 10.1080/10635150390235520. Hackman W, Meinander M. 1979. Diptera feeding as larvae on macrofungi in Finland. Ann Zool Fenn 16: 50–83. Hanski I. 1989. Fungivory: fungi, insects and ecology. pp 25-68. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds). Insect-fungus Interactions, 14th Symp R Entomol Soc London. Academic Press, London. Harrington TC. 2005. Ecology and evolution of mycophagous bark beetles and their fungal partners. pp 257–291. In: Vega FE, Blackwell M (eds). Ecological and Evolutionary Advances in Insect-Fungal Associations. Oxford University Press. Hawkeswood TJ, Turner JR, Wells RW. 1997. A new fungal host for Episcaphula australis (Boisduval), E. pictipennis Crotch and Thallis compta Erichson, with a review of the fungal host records for the Australian Erotylidae (Coleoptera). Mauritiana (Altenburg) 16(2): 307–312. Hayashi N, Takenaka H. 1965. Notes on the immature stages of Encaustes praenobilis Lewis (Coleoptera: Erotylidae). Mikado 1: 35–39. [in Japanese]. Hebert PD, Cywinska A, Ball SL, deWaard JR. 2003a. Biological identifications through DNA barcodes. Proc Biol Sci 270 (1512): 313-321. doi: 10.1098/rspb.2002.2218. Hebert PD, Ratnasingham S, de Waard JR. 2003b. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc B: Biol Sci 270: S96-S99. doi: 10.1098/rsbl.2003.0025. Hebert PD, Penton EH, Burns JM, Janzen DH, Hallwachs W. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101(41): 14812–14817. doi: 10.1073/pnas.0406166101. Hendrich L, Pons J, Ribera I, Balke M. 2010. Mitochondrial cox1 sequence data reliably uncover patterns of insect diversity but suffer from high lineage-idiosyncratic error rates. PLoS One 5(12): 1–13. doi:10.1371/journal.pone.0014448 Hinojosa JC, Dapporto L, Brockmann E, Dincă V, Tikhonov V, Grishin N, Lukhtanov VA, Vila R. 2021. Overlooked cryptic diversity in Muschampia (Lepidoptera: Hesperiidae) adds two species to the European butterfly fauna. Zool J Linn Soc 193(3):847–859. doi: 10.1093/zoolinnean/zlaa171. Hoy MA. 2013. Molecular systematics and the evolution of arthropods. Insect Molecular Genetics (Third Edition). San Diego: Academic Press. 69 pp. Huang C-Y, Xia K, Yuan P-B, Chen P-G. 2001. Structure evolution from Paleogene extension to Latest Miocene-Recent arc-continent collision offshore Taiwan: comparison with on land geology. J Asian Earth Sci 19(5): 619–639. doi: 10.1016/S1367-9120(00)00065-1. Huang H, He Q, Kubatko LS, Knowles LL. 2010. Sources of error inherent in species-tree estimation: Impact of mutational and coalescent effects on accuracy and implications for choosing among different methods. Syst Biol 59(5): 573–583. doi: 10.1093/sysbio/syq047. Jung BH, Park SJ. 2014. List of beetles (Coleoptera) associated with the oyster mushroom, Pleurotus ostreatus Fr., in the Onon-Balj National Park of Mongolia. J Species Res 3(2): 123–126. doi: 10.12651/JSR.2014.3.2.123. Jung BH, Park HC. 2017. First record of two erotylid species of Triplax (Coleoptera: Erotylidae: Tritomini) from Korea. J Species Res 6(3): 291–294. doi: 10.12651/JSR.2017.6.3.291. Jung BH 2018. Erotylidae. Arthropoda: Insecta: Coleoptera: Cucujoidea: Erotylidae. Insect fauna of Korea 12(32). Incheon: National Institute of Biological Resources, Ministry of Environment. 102 pp. Justo A, Hibbett DS. 2011. Phylogenetic classification of Trametes (Basidiomycota, Polyporales) based on a five–marker dataset. Taxon 60(6): 1567–1583. doi: 10.1002/tax.606003. Kadowaki K, Leschen RAB, Beggs JR. 2010. Spore consumption and life history of Zearagytodes maculifer (Broun) (Coleoptera: Leiodidae) on Ganoderma, its fungal host N Z J Ecol 35(1): 61–68. Kadowaki K, Leschen RAB, Beggs JR. 2011. No evidence for a Ganoderma spore dispersal mutualism in an obligate spore-feeding beetle Zearagytodes maculifer. Fungal Biol 115(8): 768–774. doi: 10.1016/j.funbio.2011.06.001. Kjer KM, Baldridge GD, Fallon AM. 1994. Mosquito large subunit ribosomal RNA: simultaneous alignment of primary and secondary structure. Biochim Biophys Acta 1217: 147–155. Kobayashi T, Sota T. 2021. Evolution of host use in fungivorous ciid beetles (Coleoptera: Ciidae): Molecular phylogeny focusing on Japanese taxa. Mol Phylogenet Evol 162: 1–10. doi: 10.1016/j.ympev.2021.107197. Komonen A. 2003. Hotspots of insect diversity in boreal forests. Conserv Biol 17(4): 976–981. doi:10.1046/j.1523-1739.2003.02076.x. Kremen C, Colwell RK, Erwin TL, Murphy DD, Noss RF, Sanjayan MA. 1993. Terrestrial arthropod assemblages: Their use in conservation planning. Conserv Biol 7: 796–808. doi: 10.1046/j.1523-1739.1993.740796.x. Kubatko LS, Degnan JH. 2007. Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst Biol 56(1): 17–24. doi: 10.1080/10635150601146041. Kuhnt P. 1909. Coleoptera, fam. Erotylidae, subfam. Erotylinae. Fascicle 88. In: Wytsman P (eds). Genera Insectorum. Brussels: Verteneuil V., Desmet L. 139 pp. Lachat T, Wermelinger B, Gossner MM, Bussler H, Isacsson G, Müller J. 2012. Saproxylic beetles as indicator species for dead-wood amount and temperature in European beech forests. Ecol Indic 23: 323–331. doi:10.1016/j.ecolind.2012.04.013. Lawrence JF. 1988. Notes on the classification of some Australian Cucujoidea (Coleoptera). Aust J Entomol 27(1): 53–54. Lawrence JF. 1989. Mycophagy in the Coleoptera: feeding strategies and morphological adaptations. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds). Insect-fungus interactions. 14th symposium of the Royal Entomological Society of London. Academic Press, London. pp 1–23. Lee SI, Spence JR, Langor DW. 2018. Conservation of saproxylic insect diversity under variable retention harvesting. pp 639–668. In: Ulyshen M (eds). Saproxylic insects: Diversity, Ecology and Conservation. Zoological Monographs 1. Springer, Cham. doi: 10.1007/978-3-319-75937-1_19. Lefort V, Longueville JE, Gascuel O. 2017. SMS: smart model selection in PhyML. Mol Biol Evol 34(9): 2422-2424. doi: 10.1093/molbev/msx149. Leschen RAB. 2003. Erotylidae (Insecta: Coleoptera: Cucujoidea): Phylogeny and review. Fauna of New Zealand 47. Lincoln: Manaaki Whenua Press. 108 pp. Leschen RAB, Beutel RG, Lawrence JF. 2010. Coleoptera, Beetles, Vol 2, Morphology and Systematics (Elateroidea, Bostrichiformia, Cucujiformia partim). pp. 311–319. In: Kristensen NP, Beutel RG, Lawrence JF (eds). Handbook of Zoology. A natural history of the phyla of the animal kingdom 4. Arthropoda. Hälfte 2. Insecta. Part 39. Walter de Gruyter, Berlin. Levins R, MacArthur R. 1969. An hypothesis to explain the incidence of monophagy. Ecology 50: 910–911. doi: 10.2307/1933709. Liu T-K, Chen Y-G, Chen W-S, Jiang S-H. 2000. Rates of cooling and denudation of the early Penglai Orogeny, Taiwan, as assessed by fission-track constraints. Tectonophysics 320(1): 69–82. doi: 10.1016/S0040-1951(00)00028-7. Lunde LF, Boddy L, Sverdrup-Thygeson A, Jacobsen RM, Kauserud H, Birkemoe T. 2022. Beetles provide directed dispersal of viable spores of a keystone wood decay fungus. bioRxiv. doi: 10.1101/2022.03.14.484227. Maddison WP. 1997. Gene trees in species trees. Syst Biol 46(3): 523–536. doi: 10.1093/sysbio/46.3.523. Maleque MA, Maet K, Ishii HT. 2009. Arthropods as bioindicators of sustainable forest management, with a focus on plantation forests. Appl Entomol Zool 44(1): 1–11. doi:10.1303/aez.2009.1. Mayers CG, Harrington TC, Masuya H, Jordal BH, McNew DL, Shih H-H, Roets F, Kietzka GJ. 2020. Patterns of coevolution between ambrosia beetle mycangia and the Ceratocystidaceae, with five new fungal genera and seven new species. Persoonia 44: 41–66. doi: 10.3767/persoonia.2020.44.02. Maynard DR, Fearn S, Gates GM. 2018. Novel host associations for the fungus beetles Cnecosa insueta and Thallis vinula (Coleoptera: Erotylidae: Erotylinae) in Tasmania. Tasman Nat 140: 21-26. Meyer S, Rusterholz HP, Baur B. 2021. Saproxylic insects and fungi in deciduous forests along a rural–urban gradient. Ecol Evol 11(4): 1634– 1652. doi: 10.1002/ece3.7152. Miettinen O, Vlasák J, Rivoire B, Spirin V. 2018. Postia caesia complex (Polyporales, Basidiomycota) in temperate Northern Hemisphere. Fungal Syst Evol 1(1): 101–129. doi: 10.3114/fuse.2018.01.05. Mishra M, Meyer‐Rochow VB. 2006. Fine structure of the compound eye of the fungus beetle Neotriplax lewisi (Coleoptera, Cucujiformia, Erotylidae). Invertebr Biol 125(3): 265–278. doi: 10.1111/j.1744-7410.2006.00059.x. Miwa Y. 1929. On the Erotylidae of Japan, Formosa, Corea and Saghalien. Trans Nat His Soc Formosa 19: 120–128. Moreira GF, Moreira CC, Andaló V, Moino Junior A, Martos ET, Souza Dias E, Lopes PL. 2009. Occurrence and characterization of injuries caused by Mycotretus apicalis Lacordaire, 1842 (Coleoptera: Erotylidae) on cultivation of Pleurotus sajor-caju. World J Microbiol Biotechnol 26 (3): 573¬575. Müller J, Brunet J, Brin A, Bouget C, Brustel H, Bussler H, Förster B, Isacsson G, Köhler F, Lachat T, Gossner MM. 2013. Implications from large-scale spatial diversity patterns of saproxylic beetles for the conservation of European Beech forests. Insect Conserv Diver 6: 162–169. doi: 10.1111/j.1752-4598.2012.00200.x. Nakane T. 1966. Notes on the Erotylidae of Formosa (Taiwan), with description of few new forms (Coleoptera). Fragm Coleopterol 15: 59–64. Nascimento FF, Reis MD, Yang Z. 2017. A biologist's guide to Bayesian phylogenetic analysis. Nat Ecol Evol 1(10):1446-1454. doi: 10.1038/s41559-017-0280-x. Nobuchi A. 1954. Morphological and ecological notes of fungivorous insects (I). On the larva of erotylid-beetles from Japan (Erotylidae, Coleoptera). Kontyû 22(1/2): 1–6. [in Japanese]. Ogilvie HA, Heled J, Xie D, Drummond AJ. 2016. Computational performance and statistical accuracy of *BEAST and comparisons with other methods. Syst Biol 65(3): 381–396. doi: 10.1093/sysbio/syv118. Ohya E. 1992. The bionomics of Dacne japonica (Coleoptera: Erotylidae), a pest of the shiitake mushroom (Lentinus edodes). J the Jpn For Soc 74: 331–336. (In Japanese with English summary.) Ohya E. 1993. The bionomics of Dacne picta (Coleoptera: Erotylidae), a pest of the shiitake mushroom (Lentinus edodes). J the Jpn For Soc 75: 10–15. (In Japanese with English summary.). Ohya E. 2001. Aggressive and courtship chirps of sympatric pleasing fungus beetles, Dacne japonica and D. picta (Coleoptera: Erotylidae). Entomol Sci 4(3): 287–290. Olsen AR, Sidebottom TH, Knight SA. 1996. Fundamentals of microanalytical entomology: A practical guide to detecting and identifying filth in foods. Boca Raton: CRC Press. Padial KM, Miralles A, De la Riva I, Vences M. 2010. The integrative future of taxonomy. Front Zool 7: 1–14. doi: 10.1186/1742-9994-7-16. Papadopoulou A, Anastasiou I, Vogler AP. 2010. Revisiting the insect mitochondrial molecular clock: The mid-aegean trench calibration. Mol Biol Evol 27(7): 1659–1672. doi:10.1093/molbev/msq051. Paradis E, Schliep K. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35(3): 526–528. doi: 10.1093/bioinformatics/bty633. Parisi F, Pioli S, Lombardi F, Fravolini G, Marchetti M, Tognetti R. 2018. Linking deadwood traits with saproxylic invertebrates and fungi in European forests - a review. iForest 11: 423–436. doi: 10.3832/ifor2670-011. Phang GJ. 2022. Host Records for Erotylinae (Coleoptera: Erotylidae) of Taiwan: Part I. Formos Entomol 41: 220–228. doi:10.6662/TESFE.202111_41(4).004. Pecci-Maddalena ISC, Skelley PE. 2021. Toward a natural classification of Tritomini: Are there hidden tribes within the genus Tritoma Fabricius (Coleoptera: Erotylidae)? Coleopt Bull 75(3): 629–641. doi: 10.1649/0010-065X-75.3.629. Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S, Sumlin WD, Vogler AP. 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 55(4): 595–609. doi: 10.1080/10635150600852011. Puillandre N, Lambert A, Brouillet S, Achaz G. 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol Ecol 21(8): 1864–1877. doi: 10.1111/j.1365-294X.2011.05239.x. Rambaut, A. 2018. FigTree, version 1.4.4. Computer program distributed by the first author, website: https://github.com/rambaut/figtree/releases/tag/v1.4.4 Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67(5): 901–904. doi: 10.1093/sysbio/syy032. Robertson JA, McHugh JV, Whiting MF. 2004. Molecular phylogenetic analysis of the pleasing fungus beetles (Coleoptera: Erotylidae): Evolution of colour patterns, gregariousness and mycophagy. Syst Entomol 29: 173–187. doi: 10.1111/j.0307-6970.2004.00242.x. Rohlfs M, Albert M, Keller NP, Kempken F. 2007. Secondary chemicals protect mold from fungivory. Biol Lett 3: 523–525. doi: 10.1098/rsbl.2007.0338. Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3): 539–542. doi: 10.1093/sysbio/sys029. RStudio Team. 2021. RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/. Rubinoff D, Cameron S, Will K. 2006. A genomic perspective on the shortcomings of mitochondrial dna for “barcoding” identification. J Hered 97(6): 581–594. doi: 10.1093/jhered/esl036. Salichos L, Rokas A. 2013. Inferring ancient divergences requires genes with strong phylogenetic signals. Nature 497(7449): 327–331. doi: 10.1038/nature12130. Saccone C, DeCarla G, Gissi C, Pesole G, Reynes A. 1999. Evolutionary genomics in the Metazoa: the mitochondrial DNA as a model system. Gene 238(1): 195–210. doi: 10.1016/s0378-1119(99)00270-x. Savary WE. 1995. Dacne picta Crotch: a recently introduced pest of stored, dried shiitake mushrooms (Coleoptera: Erotylidae). Pan-Pac Entomol 71(2): 87–91. Schigel DS. 2012. Fungivory and host associations of Coleoptera: a bibliography and review of research approaches. Mycology 3(4): 258-272. doi: 10.1080/21501203.2012.741078. Schigel DS. 2016. Beetles versus Fungi: Trophic Interactions in Boreal Forests. pp 269–278. In: Druzhinina I, Kubicek C (eds). Environmental and Microbial Relationships. The Mycota 4. Springer, Cham. doi: 10.1007/978-3-319-29532-9_14. Schlick-Steiner BC, Steiner FM, Seifert B, Stauffer C, Christian E, Crozier RH. 2010. Integrative taxonomy: a multisource approach to exploring biodiversity. Annu Rev Entomol 55: 421-438. doi: 10.1146/annurev-ento-112408-085432. Seman IA. 2013. Estado actual de la investigación y desarrollo (I+D) sobre Ganoderma en Malasia. Palmas (Columbia) 34(Special Volume 1): 100–118. [in Spanish] Shaw PJA. 1992. Fungi, fungivores and fungal food webs. pp 295–310. In: Carroll GC, Wicklow D (eds). The fungal community: its organisation and role in ecosystems Vol 2. CRS Press, New York. Sistrom M, Hutchinson M, Bertozzi T, Donnellan S. 2014. Evaluating evolutionary history in the face of high gene tree discordance in Australian Gehyra (Reptilia: Gekkonidae). Heredity 113(1): 52–63. doi: 10.1038/hdy.2014.6. Skelley PE. 1999. Pleasing Fungus Beetles, Pseudischyrus, Tritoma, Megalodacne, Ischyrus spp. (Insecta: Coleoptera: Erotylidae). University of Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, EDIS. 3 pp. Skelley PE, Gasca-Álvarez HJ. 2020. Dyslexia, a new remarkable genus of pleasing fungus beetles (Coleoptera: Erotylidae: Erotylinae) from the Andes. Insecta Mundi 0835: 1–15. Skelley PE, Goodrich MA, Leschen RAB. 1991. Fungal host records for the Erotylidae (Coleoptera: Cucujoidea) of America north of Mexico. Entomol News 102(2): 57–72. Skelley PE, Leschen RAB, Liu ZH. 2021. Nomenclatural notes for some Australian Erotylinae (Coleoptera: Erotylidae). Zootaxa 4966: 69-76. doi:10.11646/zootaxa.4966.1.7. Smith MR. 2020a. Information theoretic Generalized Robinson-Foulds metrics for comparing phylogenetic trees. Bioinformatics 36: 5007–5013. doi: 10.1093/bioinformatics/btaa614. Smith MR. 2020b. TreeDist: Distances between Phylogenetic Trees. R package version 2.3.0. Comprehensive R Archive Network. doi:10.5281/zenodo.3528124. Sota T, Liang H, Enokido Y, Hori M. 2011. Phylogeny and divergence time of island tiger beetles of the genus Cylindera (Coleoptera: Cicindelidae) in East Asia. Biol J Linn Soc 102(4): 715–727. doi: 10.1111/j.1095-8312.2011.01617.x. Speight MCD. 1989. Saproxylic invertebrates and their conservation. Nature and Environment 42. Strasbourg: Council of Europe. 78 pp. Stokland JN, Siitonen J, Jonsson BG. 2012. Biodiversity in dead wood. Cambridge: Cambridge University Press. 545 pp. Tayeng M, Gogoi H. 2016. Insect pollinators of crops and fruits in Arunachal Pradesh, Eastern Himalaya: Rich diversity in flowers with yellow anther. Proc Zool Soc 71(1): 56–62. Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Villarreal Ruiz L, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson KH, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo LD, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov, K. 2014. Fungal biogeography. Global diversity and geography of soil fungi. Science 346(6213): 1–10. doi: 10.1126/science.1256688. Tillier S, De Wever P, Gros F, Dercourt J. 2000. Systématique(ordonner la diversité du vivant). Académie des Sciences- Rapports sur la science et la technologie. Toews DPL, Brelsford A. 2012. The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol 21(16): 3907–3930. doi:10.1111/j.1365-294x.2012.05664.x. Trienens M, Rohlfs M. 2011. Experimental evolution of defense against a competitive mold confers reduced sensitivity to fungal toxins but no increased resistance in Drosophila larvae. BMC Evol Biol 11(206): 1–10. doi: 10.1186/1471-2148-11-206. Tsai C-L, Wan X, Yeh W-B. 2014. Differentiation in stag beetles, Neolucanus swinhoei complex (Coleoptera: Lucanidae): four major lineages caused by periodical Pleistocene glaciations and separation by a mountain range. Mol Phylogenet Evol 78: 245–259. doi: 10.1016/j.ympev.2014.05.004. Ulyshen MD. 2016. Wood decomposition as influenced by invertebrates. Biol Rev 91(1): 70–85. doi: 10.1111/brv.12158 Ulyshen MD. 2018. Saproxylic Diptera. pp 167–192. In: Ulyshen M (eds). Saproxylic insects: Diversity, Ecology and Conservation. Zoological Monographs 1. Springer, Cham. doi: 10.1007/978-3-319-75937-1_5. Ulyshen MD, Šobotník J. 2018. An introduction to the diversity, ecology, and conservation of saproxylic insects. pp 1–50. In: Ulyshen M (eds). Saproxylic insects: Diversity, Ecology and Conservation. Zoological Monographs 1. Springer, Cham. doi: 10.1007/978-3-319-75937-1_1. Valencia NR, López CJ. 2005. Cultivo de hongos comestibles del gênero Pleurotus sobre residuos agrícolas de la zona cafetera. FNC-Cenicafé, Colômbia. 56 pp. Wang Y, Nansen C, Zhang Y. 2016. Integrative insect taxonomy based on morphology, mitochondrial DNA, and hyperspectral reflectance profiling. Zool J Linn Soc 177(2): 378–394. doi: 10.1111/zoj.12367. Węgrzynowicz P. 2007. Family Erotylidae Latreille, 1802. pp. 531–546. In: Löbl I, Smetana A. (eds). Catalogue of Palaearctic Coleoptera, Volume 4, Elateroidea - Derodontoidea - Bostrichoidea - Lymexyloidea - Cleroidea – Cucujoidea. Apollo Books, Stenstrup, Denmark. Węgrzynowicz P, Byk A. 2014. Tritoma subbasalis (Reitter) (Coleoptera: Erotylidae) in Poland. Coleopt Bull 68(3): 619–623. Weigand H, Weiss M, Cai H, Li Y, Yu L, Zhang C, Leese F. 2017. Deciphering the origin of mito-nuclear discordance in two sibling caddisfly species. Mol Ecol 26(20): 5705–5715. doi: 10.1111/mec.14292. Will KW, Mishler BD, Wheeler QD. 2005. The perils of DNA barcoding and the need for integrative taxonomy. Syst Biol 54: 844–851. doi: 10.1080/10635150500354878. Zaitsev AA, Kompantsev AV, Zaitsev AI. 2016. A review of larval Encaustini (Coleoptera: Erotylidae) from Russia. Russian Entomol J 25(4): 367–386. doi: 10.15298/RUSENTJ.25.4.05. Zhang J, Kapli P, Pavlidis P, Stamatakis A. 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29(22): 2869–2876. doi: 10.1093/bioinformatics/btt499. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85084 | - |
| dc.description.abstract | 探究喜腐木性昆蟲多樣性在生物多樣性領域的研究中很重要,它提供了未來生態學、演化和保育研究提供了基礎資訊。 大蕈蟲亞科是喜腐木性的蕈食性甲蟲,不同的大蕈蟲亞科物種會偏好不同種擔子菌門真菌。因此,探究大蕈蟲亞科的物種多樣性可顯現真菌的多樣性並與森林健康狀況有關。大蕈蟲亞科的物種多樣性研究面臨穩定的鑑定特徵不足的狀況並且缺乏完整的分類修訂和回顧。為了提供穩定的物種界線與完善的鑑定特徵,有必要探究大蕈蟲亞科的物種多樣性,我們結合了真菌寄主偏好、形態和DNA數據來研究台灣 大蕈蟲亞科的物種多樣性。我們的親緣關係分析結果顯示親緣關係相近的分類群可能具有相似的真菌寄主偏好,並且提供真菌-甲蟲相互作用研究設定了標竿。此外,我們的親緣關係分析顯示了舊世界大蕈蟲亞科各族之間的親緣關係,並揭示了 Encaustini 和 Dacnini族以及 Tritoma 和 Triplax 屬不是單系群,儘管在演化樹較接近根的節點有低的統計支持。基因樹不一致分析顯示我們的親緣關係樹除了粒線體和核基因的不一致外,還有核基因之間的不一致且不同親緣關係方法之間也存在差異。基於物種界定的結果,大蕈蟲亞科的物種多樣性是被低估的,顯示有高的隱蔽種多樣性和未描述的物種,但物種的種化歷程可能與寄主偏好沒有關係。我們認為大蕈蟲亞科中還有很多未描述的物種,為了加深我們對物種種化和寄主主偏好之間關係的認識,我們需要更多的物種採樣、共演化分析以及寄主專一性實驗。另外,大蕈蟲亞科的物種多樣性是否可以顯示示森林的健康程度還有待進一步的研究。 | zh_TW |
| dc.description.abstract | Exploring saproxylic insect diversity is important in biodiversity research that provides baseline information for downstream ecology, evolution, and conservation studies. Erotylinae beetles are saproxylic mycophagous insects where different species may have different host fungal preferences on several orders of Agaricomycetes. The species diversity of Erotylinae thus may be indicative of fungal diversity and related to forest health. Studying Erotylinae species diversity has been challenging because only few diagnostic characters are available, and lack of proper revisionary works. In this study, we incorporated multiple lines of evidences, e.g., fungal host preference, morphology, and molecular data, to study the species diversity of Taiwanese Erotylinae. We showed that closely related taxa may have similar fungal host preferences and set a benchmark for further fungus-beetle interaction studies using a phylogenetic approach. Additionally, our phylogenetic analysis showed the phylogenetic relationship among the Old World Erotylinae tribes and revealed that tribes Encaustini and Dacnini and genera Tritoma and Triplax are not monophyletic, although low posterior probabilities existed at the deeper nodes. The gene tree discordance analysis showed that there are mitonuclear discordance and nuclear-nuclear discordance and also discrepancy among different phylogenetic methods. The species diversity was underestimated with a high number of cryptic species and morphologically distinct species based on molecular species delimitation analyses, but the speciation may not be accompanied by host preference divergence. We conclude that there are still more undescribed species in Erotylinae and that, to enhance our understanding on the relationship between species divergence and host preference, and to test whether the Erotylinae species diversity can be indicative of forest health, additional sampling, cophylogenetic analyses, and host specialization experiments with genome-wide data are needed. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:42:37Z (GMT). No. of bitstreams: 1 U0001-0808202215234200.pdf: 45686119 bytes, checksum: 3acc6a02d098a666e53a7f345f3e681e (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝…………………………………………………………………………………ii 中文摘要……………………………………………………………………………iii Abstract……………………………………………………………………………iv Table of Contents……………………………………………………………………v List of Figures………………………………………………………………………vii List of Tables………………………………………………………………………viii Chapter 1 Introduction……………………………………………………………1 Chapter 2 Materials and Methods………………………………………………8 2.1 Taxon sampling…………………………………………………8 2.2 Fungal host records……………………………………………8 2.3 DNA extraction, amplification, and sequencing………………9 2.4 Molecular data: mitochondrial COI, nuclear 28S rDNA, nuclear h3………………………………………………………10 2.5 Phylogenetic analyses…………………………………………10 2.6 Gene tree discordance analysis………………………………12 2.7 Species delimitation analyses…………………………………13 Chapter 3 Results…………………………………………………………………15 3.1 Fungal host records of Taiwanese Erotylinae beetle………15 3.2 Phylogenetic relationship among the tribes and genera of Taiwanese Erotylinae beetles…………………………………15 3.3 Gene tree discordance among different gene trees and methods…………………………………………………………16 3.4 The framework of the Taiwanese Erotylinae beetle species diversity………………………………………………………17 3.5 Fungal host preference…………………………………………18 Chapter 4 Discussion……………………………………………………………20 4.1 Limited fungal host information in previous studies………20 4.2 The problematic taxonomic characteristics and taxon classification boundaries………………………………………21 4.3 Low statistical support at the deeper nodes of phylogenetic tree………………………………………………………………22 4.4 Underestimated species diversity……………………………23 4.5 Fungal host preference might be related to forest health……24 4.6 The implications of taxonomic inconsistencies on the fungal host preference patterns………………………………………25 4.7 Different fungal host preference patterns compared to previous studies…………………………………………………………25 Chapter 5 Conclusion……………………………………………………………27 References…………………………………………………………………………28 Supporting Information……………………………………………………………68 | |
| dc.language.iso | en | |
| dc.subject | 真菌寄主偏好 | zh_TW |
| dc.subject | 食蕈甲蟲 | zh_TW |
| dc.subject | 隱蔽種多樣性 | zh_TW |
| dc.subject | 物種多樣性低估 | zh_TW |
| dc.subject | 基因樹不一致 | zh_TW |
| dc.subject | underestimated species diversity | en |
| dc.subject | cryptic diversity | en |
| dc.subject | fungal host preference | en |
| dc.subject | fungus beetle | en |
| dc.subject | gene tree discordance | en |
| dc.title | 臺灣大蕈蟲亞科物種多樣性研究 | zh_TW |
| dc.title | Using molecular and morphological data to investigate the species diversity of Erotylinae (Coleoptera: Erotylidae) in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 黃仁磐(Jen-Pan Huang) | |
| dc.contributor.oralexamcommittee | 黃尹則(Yin-Tse Huang),林思民(Si-Min Lin),費卡契(Martin Fikáček) | |
| dc.subject.keyword | 隱蔽種多樣性,物種多樣性低估,基因樹不一致,真菌寄主偏好,食蕈甲蟲, | zh_TW |
| dc.subject.keyword | cryptic diversity,fungal host preference,fungus beetle,gene tree discordance,underestimated species diversity, | en |
| dc.relation.page | 68 | |
| dc.identifier.doi | 10.6342/NTU202202149 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-15 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-19 | - |
| 顯示於系所單位: | 昆蟲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0808202215234200.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 44.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
