請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85074
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林詩舜(Shih-Shun Lin) | |
dc.contributor.author | Yen-Hsin Chiu | en |
dc.contributor.author | 邱燕欣 | zh_TW |
dc.date.accessioned | 2023-03-19T22:41:58Z | - |
dc.date.copyright | 2022-09-30 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-27 | |
dc.identifier.citation | chapter 1 Agarwal, V. K. and Sinclair, J. B. 1996. Principles of Seed Pathology, Second Edition. CRC Press, Boca Raton, FL. 560 pp. Alazem M. and Lin N.S., 2017. Antiviral Roles of Abscisic Acid in Plants. Front. Plant Sci. 8:1760. doi: 10.3389/fpls.2017.01760 Anandalakshmi R., Pruss G.J., Ge X., Marathe R., Smith T.H., and Vance V.B. 1998. A viral suppressor of gene silencing in plants. Proc. Natl. Acad. Sci. USA, 95: 13079-13084 Bebber, D. P., Holmes, T. and Gurr, S. J., 2014. The global spread of crop pests and pathogens. Global Ecol. Biogeogr. 23: 1398-1407. Benderradji L, Saibi W and Brini F. Role of ABA in Overcoming Environmental Stress: Sensing, Signaling and Crosstalk. Ann Agric Crop Sci. 2021; 6(1): 1070. Blanc, S., Ammar, E.D., Garcia-Lampasona, S., Dolja, V.V., Llave, C., Baker, J., Pirone, T.P. 1998. Mutations in the potyvirus helper component protein: Effects on interactions with virions and aphid stylets. J. Gen. Virol. 79:3119–3122. Brookbank, B.P.; Patel, J.; Gazzarrini, S.; Nambara, E. 2021. Role of Basal ABA in Plant Growth and Development. Genes, 12, 1936. https://doi.org/10.3390/ genes12121936 Cheng C. H., Shen B. N., Shang Q. W., Liu L. D., Peng K. C. and Chen Y. H. 2018. Gene-to-Gene network analysis of the mediation of plant innate immunity by the eliciting plant Response-Like 1 (Epl1) elicitor of trichoderma formosa. Mol. Plant Microbe Interact. 31:683. 10.1094/mpmi-01-18-0002-ta Chinnusamy, V., Gong, Z., and Zhu, J.K. 2008. Abscisic acid-mediated epigenetic processes in plant development and stress responses. J. Integr. Plant Biol. 50:1187–1195. Cui H., and Wang A. 2016. Plum pox virus 6K1 protein is required for viral replication and targets the viral replication complex at the early stage of infection. J. Virol. 90 (10), 5119–5131. De, S., Pollari, M., Varjosalo, M., and Mäkinen, K. 2020. Association of host protein VARICOSE with HCPro within a multiprotein complex is crucial for RNA silencing suppression, translation, encapsidation and systemic spread of potato virus A infection. PLoS Pathog. 16, e1008956. DeMell A. and Dinesh-Kumar S.P. 2021. Ca2+ kickstarts antiviral RNAi. Cell Host Microbe. 8;29(9):1339-1341. doi: 10.1016/j.chom.2021.08.008. PMID: 34499860. Dutta B., Block C.C., Stevenson K.L., Hunt Sanders F.,Walcott R.R., Gitaitis R.D. 2013. Distribution of phytopathologenic bacteria in infested seeds. Seed Science and Technology 41:383-397. Elmer, W.H. 2001. Seeds as Vehicles for Pathogen Importation. Biological Invasions 3, 263–271. https://doi.org/10.1023/A:1015217308477 English J.J., Mueller,E. and Baulcombe,D.C. 1996. Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. Plant Cell, 8: 179–188. Giani A.M., Gallo G.R. Gianfranceschi L., Formenti G. 2020, Long walk to genomics: History and current approaches to genome sequencing and assembly Computational and Structural Biotechnology Journal 18: 9–19 Hasiów-Jaroszewska, B., Fares, M.A., Elena, S.F. 2014. Molecular evolution of viral multifunctional proteins: The case of potyvirus HC-Pro. J. Mol. Evol. 78:75–86. Iqbal Z., Iqbal M. S., Singh S. P., and Buaboocha T. 2020. Ca2+/Calmodulin Complex Triggers CAMTA Transcriptional Machinery Under Stress in Plants: Signaling Cascade and Molecular Regulation. Front. Plant Sci. 11:598327. doi: 10.3389/fpls.2020.598327 IPPC. 2017. International Standards for Phytosanitary Measures. ISPM 38: International Movement of Seed. International Plant Protection Convention FAO, Rome. 19 pp. ISF. 2017. Imports of seed for sowing by country – Calendar year 2015, http://259970.vserv2152.swisslink.ch/wpcontent/uploads/2017/06/Seed_Import_2015.pdf (accessed on 27 July 2017). ISTA. 2009. International Rules for Seed Testing. Annex to Chapter 7 Seed Health Testing. Seed Health Testing Methods. International Seed Testing Association, Bassersdorf, Switzerland ISTA. 2014. International Rules for Seed Testing. International Seed Testing Association, Bassersdorf. Jones, R.A.C. 2009. Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res. 141:113–30 Jones, R.A.C. Naidu, R.A. 2019. Global dimensions of plant virus diseases: Current status and future perspectives. Annu. Rev. Virol. 6, 387–409. Jones, R.A.C. Global Plant Virus Disease Pandemics and Epidemics. Plants 2021, 10, 233. https://doi.org/10.3390/plants10020233 Kasschau, K.D. and Carrington, J.C. 1998. A Counter Defensive Strategy of Plant Viruses: Suppression of Posttranscriptional Gene Silencing. Cell, 95: 461-470. Kasschau, K.D. and Carrington, J.C. 2001. Long-distance movement and replication maintenance functions correlate with silencing suppression activity of potyviral HC-Pro. Virology, 285: 71-81. Kasschau, K.D., Xie, Z., Allen, E., Llave, C., Chapman, E.J., Krizan, K.A., and Carrington, J.C. 2003. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev. Cell, 4: 205–217. Kung, Y.J., Lin, P.C., Yeh, S.D., Hong, S.F., Chua, N.H., Liu, L.Y., Lin, C.P., Huang, Y.H., Wu and H.W., Chen, C.C. 2014. Genetic analyses of the FRNK motif function of Turnip mosaic virus uncover multiple and potentially interactive pathways of crossprotection. Mol. Plant-Microbe Interact. 27: 944–955. Li, F. and Wang, A. 2018. RNA decay is an antiviral defense in plants that is counteracted by viral RNA silencing suppressors. PLoS Pathog. 14, e1007228. Lin L.J., Luther G. C., Hanson P. 2015. Raising healthy tomato seedlings. AVRDC Publication No. 15-795. Liu, L. Y., Tseng, H. I., Lin, C. P., Lin, Y. Y., Huang, Y. H., Huang, C. K., Chang, T. H., and Lin, S. S. 2014. High-throughput transcriptome analysis of the leafy flower transition of Catharanthus roseus induced by peanut witches’-broom phytoplasma infection. Plant Cell Physiol. 55: 942-957. Maia, I.G., Haenni, A.-L., Bernardi, F. 1996. Potyviral HC-Pro: A multifunctional protein. J. Gen. Virol. 77: 1335–1341. Margulies, M., Egholm M., Altman W. E., Attiya S., Bader J. S., Bemben L. A., Berka J., Braverman M. S., Chen Y. J., Chen Z., Dewell S. B., Du L., Fierro J. M., Gomes X. V., Godwin B. C., Helgesen W. He, S., Ho C. H., Irzyk G. P., Jando S. C., Alenquer M. L., Jarvie T. P., Jirage K. B., Kim J. B., Knight J. R., Lanza J. R., Leamon J. H., Lefkowitz S. M., Lei M., Li J., Lohman K. L., Lu H., Makhijani V. B., McDade K. E., McKenna M. P., Myers E. W., Nickerson E., Nobile J. R., Plant R., Puc B. P., Ronan M. T., Roth G. T., Sarkis G. J., Simons J. F., Simpson J. W., Srinivasan M., Tartaro K. R., Tomasz A., Vogt K. A., Volkmer G. A., Wang S. H., Wang Y., Weiner M. P., Yu P., Begley R. F., and Rothberg J. M.. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376-380. Martínez F. and Daròs J.A. 2014. Tobacco etch virus protein P1 traffics to the nucleolus and associates with the host 60S ribosomal subunits during infection. J. Virol. 88: 10725–10737. doi: 10.1128/JVI.00928-14. Mauch-Mani B, Mauch F 2005. The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8: 409–414 Nallathambi P., Umamaheswari C., Lal S. K., Manjunatha C. and Berliner J. 2020. Mechanism of Seed Transmission and Seed Infection in Major Agricultural Crops in India. Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis and Management. 749–791. Nigam D., LaTourrette K., Souza P. F. N., Garcia-Ruiz H. 2019. Genome-wide variation in potyviruses. Front. Plant Sci. 10:1439. OECD. 2018. Concentration in Seed Markets: Potential Effects and Policy Responses, OECD Publishing, Paris, https://doi.org/10.1787/9789264308367-en. Quenouille J., Vassilakos N. and Moury B. 2013. Potato virus Y: a major crop pathogen that has provided major insights into the evolution of viral pathogenicity. Mol Plant Pathol. 14: 439–452. Parkash V, Sharma DB, Snider J, Bag S, Roberts P, Tabassum A, West D, Khanal S, Suassuna N and Chee P. 2021. Effect of Cotton Leafroll Dwarf Virus on Physiological Processes and Yield of Individual Cotton Plants. Front. Plant Sci. 12:734386. doi: 10.3389/fpls.2021.734386 Rahman M.M.E., Ali M.E., Ali M.S., Rahman M.M. and Islam M. N. 2008. Hot Water Thermal Treatment for Controlling Seed-Borne Mycoflora of Maize. Int. J. Sustain. Crop Prod. 3(5): 5-9. ReFreSHA. Regulatory Framework for Seed Health. Concept Paper. 2019. USDA, APHIS. Riverdale, MD. https://www.betterseed.org/wp-content/uploads/ReFreSH-ConceptPaper-Draft_-2019.pdf Rubio L, Galipienso L. and Ferriol I., 2020. Detection of Plant Viruses and Disease Management: Relevance of Genetic Diversity and Evolution. Front. Plant Sci. 11:1092. doi: 10.3389/fpls.2020.01092 Sastry SK and Zitter TA. 2014. Management of virus and viroid diseases of crops in the tropics. In Plant Virus and Viroid Diseases in the Tropics Vol. 2, Epidemiology and Management, ed. SK Sastry, TA Zitter, pp. 149–480. Dordrecht, Neth.: Springer Syngenta. 2016. Our industry 2016. Rep., Syngenta, Basel, Switz. https://www.syngenta.com/sites/syngenta/files/GRI/our-industry-syngenta.pdf Thor K. 2019. Calcium—Nutrient and Messenger. Front. Plant Sci. 10:440. doi: 10.3389/fpls.2019.00440 Thresh JM. 2006. Viruses and virus diseases: a global perspective. In Virus Diseases and Crop Biosecurity, NATO Security Through Science Series C, Environmental Security, ed. JI Cooper,T Kuehne, VP Polischuk,pp. 9–32. Dordrecht, Neth.: Springer Valli, A.A., Gallo, A., Rodamilans, B., López-Moya, J.J. and García, J.A. 2018. The HCPro from the Potyviridae family: An enviable multitasking Helper Component that every virus would like to have. Mol. Plant Pathol. 19: 744–763. Verchot J., and Carrington J.C. 1995. Evidence that the potyvirus P1 proteinase functions in trans as an accessory factor for genome amplification. J. Virol. 69: 3668–3674. doi: 10.1128/jvi.69.6.3668-3674.1995. Voelkerding, K.V., S. A. Dames, and J. D. Durtschi. 2009. Next-generation sequencing: from basic research to diagnostics. Clin. Chem. 55: 641-658. Walcott R.R. 2003. Detection of seedborne pathogens. HortTechnology 13:40–47 Wang Y., Gong Q., Wu Y., Huang F., Ismayil A., Zhang D., Li H., Gu H., Ludman M., Fátyol K., Qi Y., Yoshioka K., Hanley-Bowdoin L., Hong Y. and Liu Y. (2021). A calmodulin-binding transcription factor links calcium signaling to antiviral RNAi defense in plants. Cell Host & Microbe, 29(9), 1393–1406.e7. doi:10.1016/j.chom.2021.07.003 White, P. J., and Broadley, M. R. (2003). Calcium in plants. Ann. Bot. 92, 487–511. doi: 10.1093/aob/mcg164. PubMed Abstract | CrossRef Full Text | Google Scholar Wu, H.W., Lin, S.S., Chen, K.C., Yeh, S.D., Chua, N.H. 2010. Discriminating mutations of HC-Pro of zucchini yellow mosaic virus with differential effects on small RNA pathways involved in viral pathogenicity and symptom development. Mol. Plant-Microbe Interact. 23: 17–28. www.contigviews.bioagri.ntu.edu.tw Yang, X., Li, Y., and Wang, A. 2021. Research advances in potyviruses: From the laboratory bench to the field. Annu. Rev. Phytopathol. 59: 1–29. chapter 2 1. Hu S.F., Wei W.L., Hong S.F., Fang R.Y., Wu H.Y., Lin P.C., Sanobar N., Wang H.P., Sulistio M., Wu C.T., et al. Investigation of the effects of P1 on HC-pro-mediated gene silencing suppression through genetics and omics approaches. Bot. Stud. 2020;61:22. doi: 10.1186/s40529-020-00299-x. 2. Kung Y.J., Lin P.C., Yeh S.D., Hong S.F., Chua N.H., Liu L.Y., Lin C.P., Huang Y.H., Wu H.W., Chen C.C., et al. Genetic analyses of the FRNK motif function of Turnip mosaic virus uncover multiple and potentially interactive pathways of cross-protection. Mol. Plant Microbe Interact. 2014;27:944–955. doi: 10.1094/MPMI-04-14-0116-R. 3. Wu H.W., Lin S.S., Chen K.C., Yeh S.D., Chua N.H. Discriminating mutations of HC-Pro of zucchini yellow mosaic virus with differential effects on small RNA pathways involved in viral pathogenicity and symptom development. Mol. Plant Microbe Interact. 2010;23:17–28. doi: 10.1094/MPMI-23-1-0017. 4. Sanobar N., Lin P.C., Pan Z.J., Fang R.Y., Tjita V., Chen F.F., Wang H.C., Tsai H.L., Wu S.H., Shen T.L., et al. Investigating the Viral Suppressor HC-Pro Inhibiting Small RNA Methylation through Functional Comparison of HEN1 in Angiosperm and Bryophyte. Viruses. 2021;13:1837. doi: 10.3390/v13091837. 5. Pasin F., Shan H., García B., Müller M., San León D., Ludman M., Fresno D.H., Fátyol K., Munné-Bosch S., Rodrigo G., et al. Abscisic Acid Connects Phytohormone Signaling with RNA Metabolic Pathways and Promotes an Antiviral Response that Is Evaded by a Self-Controlled RNA Virus. Plant Commun. 2020;1:100099. doi: 10.1016/j.xplc.2020.100099. 6. Li W., Cui X., Meng Z., Huang X., Xie Q., Wu H., Jin H., Zhang D., Liang W. Transcriptional regulation of Arabidopsis MIR168a and argonaute1 homeostasis in abscisic acid and abiotic stress responses. Plant Physiol. 2012;158:1279–1292. doi: 10.1104/pp.111.188789. 7. Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. 8. Roberts A., Pachter L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat. Methods. 2013;10:71–73. doi: 10.1038/nmeth.2251. 9. Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B.C., Remm M., Rozen S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012;40:e115. doi: 10.1093/nar/gks596. 10. Metsalu T., Vilo J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015;43:W566–W570. doi: 10.1093/nar/gkv468. 11. Nakashima K., Yamaguchi-Shinozaki K. ABA signaling in stress-response and seed development. Plant Cell Rep. 2013;32:959–970. doi: 10.1007/s00299-013-1418-1. 12. Edel K.H., Kudla J. Integration of calcium and ABA signaling. Curr. Opin. Plant Biol. 2016;33:83–91. doi: 10.1016/j.pbi.2016.06.010. 13. Kutter C., Schob H., Stadler M., Meins F., Jr., Si-Ammour A. MicroRNA-mediated regulation of stomatal development in Arabidopsis. Plant Cell. 2007;19:2417–2429. doi: 10.1105/tpc.107.050377. 14. Knight M.R., Campbell A.K., Smith S.M., Trewavas A.J. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature. 1991;352:524–526. doi: 10.1038/352524a0. 15. Zhang Y., Wang H.L., Li Z., Guo H. Genetic Network between Leaf Senescence and Plant Immunity: Crucial Regulatory Nodes and New Insights. Plants. 2020;9:495. doi: 10.3390/plants9040495. 16. Chung K., Nakano T., Fujiwara S., Mitsuda N., Otsuki N., Tsujimoto-Inui Y., Naito Y., Ohme-Takagi M., Suzuki K. The ERF transcription factor EPI1 is a negative regulator of dark-induced and jasmonate-stimulated senescence in Arabidopsis. Plant Biotechnol. 2016;33:235–243. doi: 10.5511/plantbiotechnology.16.0127a. 17. Zhou X., Jiang Y., Yu D. WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis. Mol. Cells. 2011;31:303–313. doi: 10.1007/s10059-011-0047-1. 18. Daneva A., Gao Z., Van Durme M., Nowack M.K. Functions and Regulation of Programmed Cell Death in Plant Development. Annu. Rev. Cell Dev. Biol. 2016;32:441–468. doi: 10.1146/annurev-cellbio-111315-124915. [PubMed] [CrossRef] [Google Scholar] 19. Khanna-Chopra R. Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma. 2012;249:469–481. doi: 10.1007/s00709-011-0308-z. 20. Asada Y., Yamamoto M., Tsutsui T., Yamaguchi J. The Arabidopsis NSL2 negatively controls systemic acquired resistance via hypersensitive response. Plant Biotechnol. 2011;28:9–15. doi: 10.5511/plantbiotechnology.10.0913a. 21. Straus M.R., Rietz S., Ver Loren van Themaat E., Bartsch M., Parker J.E. Salicylic acid antagonism of EDS1-driven cell death is important for immune and oxidative stress responses in Arabidopsis. Plant J. 2010;62:628–640. doi: 10.1111/j.1365-313X.2010.04178.x. 22. Chinnusamy V., Gong Z., Zhu J.K. Abscisic acid-mediated epigenetic processes in plant development and stress responses. J. Integr. Plant Biol. 2008;50:1187–1195. doi: 10.1111/j.1744-7909.2008.00727.x. 23. Ton J., Flors V., Mauch-Mani B. The multifaceted role of ABA in disease resistance. Trends Plant Sci. 2009;14:310–317. doi: 10.1016/j.tplants.2009.03.006. 24. Lim C.W., Baek W., Jung J., Kim J.H., Lee S.C. Function of ABA in Stomatal Defense against Biotic and Drought Stresses. Int. J. Mol. Sci. 2015;16:15251–15270. doi: 10.3390/ijms160715251. 25. Allen G.J., Chu S.P., Harrington C.L., Schumacher K., Hoffmann T., Tang Y.Y., Grill E., Schroeder J.I. A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature. 2001;411:1053–1057. doi: 10.1038/35082575. 26. Fu Z.Q., Yan S., Saleh A., Wang W., Ruble J., Oka N., Mohan R., Spoel S.H., Tada Y., Zheng N., et al. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature. 2012;486:228–232. doi: 10.1038/nature11162. 27. Wang D., Yang C., Wang H., Wu Z., Jiang J., Liu J., He Z., Chang F., Ma H., Wang X. BKI1 Regulates Plant Architecture through Coordinated Inhibition of the Brassinosteroid and ERECTA Signaling Pathways in Arabidopsis. Mol. Plant. 2017;10:297–308. doi: 10.1016/j.molp.2016.11.014. 28. Baulcombe D. RNA silencing in plants. Nature. 2004;431:356–363. doi: 10.1038/nature02874. 29. Martínez de Alba A.E., Elvira-Matelot E., Vaucheret H. Gene silencing in plants: A diversity of pathways. Biochim. Biophys. Acta. 2013;1829:1300–1308. doi: 10.1016/j.bbagrm.2013.10.005. 30. Anandalakshmi R., Pruss G.J., Ge X., Marathe R., Mallory A.C., Smith T.H., Vance V.B. A viral suppressor of gene silencing in plants. Proc. Natl. Acad. Sci. USA. 1998;95:13079–13084. doi: 10.1073/pnas.95.22.13079. 31. Kasschau K.D., Carrington J.C. A counterdefensive strategy of plant viruses: Suppression of posttranscriptional gene silencing. Cell. 1998;95:461–470. doi: 10.1016/S0092-8674(00)81614-1. 32. Kontra L., Csorba T., Tavazza M., Lucioli A., Tavazza R., Moxon S., Tisza V., Medzihradszky A., Turina M., Burgyán J. Distinct Effects of p19 RNA Silencing Suppressor on Small RNA Mediated Pathways in Plants. PLoS Pathog. 2016;12:e1005935. doi: 10.1371/journal.ppat.1005935. 33. Mallory A.C., Reinhart B.J., Bartel D., Vance V.B., Bowman L.H. A viral suppressor of RNA silencing differentially regulates the accumulation of short interfering RNAs and micro-RNAs in tobacco. Proc. Natl. Acad. Sci. USA. 2002;99:15228–15233. doi: 10.1073/pnas.232434999. 34. Baráth D., Jaksa-Czotter N., Molnár J., Varga T., Balássy J., Szabó L.K., Kirilla Z., Tusnády G.E., Preininger É., Várallyay É. Small RNA NGS Revealed the Presence of Cherry Virus A and Little Cherry Virus 1 on Apricots in Hungary. Viruses. 2018;10:318. doi: 10.3390/v10060318. 35. Hadidi A., Flores R., Candresse T., Barba M. Next-Generation Sequencing and Genome Editing in Plant Virology. Front. Microbiol. 2016;7:1325. doi: 10.3389/fmicb.2016.01325. 36. Pesti R., Kontra L., Paul K., Vass I., Csorba T., Havelda Z., Várallyay É. Differential gene expression and physiological changes during acute or persistent plant virus interactions may contribute to viral symptom differences. PLoS ONE. 2019;14:e0216618. doi: 10.1371/journal.pone.0216618. chapter 3 Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335-336. Chou FL, Chou HC, Lin YS, Yang BY, Lin NT, Weng SF, Tseng YH (1997) The Xanthomonas campestris gumD gene required for synthesis of Xanthan gum is involved in normal pigmentation and virulence in causing black rot. Biochemical and Biophysical Research Communications, 233: 265–269. doi:10.1006/bbrc.1997.6365 EPPO (2013) PM 7/110 (1): Xanthomonas spp. (Xanthomonas euvesicatoria, Xanthomonas gardneri, Xanthomonas perforans, Xanthomonas vesicatoria) causing bacterial spot of tomato and sweet pepper. EPPO Bulletin 43: 7–20. Golmohammadi M, Llop P, Scuderi G, Gell I, Graham JH, Cubero J (2011) mRNA from selected genes is useful for specific detection and quantification of viable Xanthomonas citri subsp. citri. Plant Pathol. 61: 479-488. Jones JB, Lacy GH, Bouzar H, Stall RE, Schaad NW (2004) Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Syst. Appl. Microbiol. 27: 755-762. Kebede M, Timilsina S, Ayalew A, Admassu B, Potnis N, Minsavage GV (2014) Molecular characterization of Xanthomonas strains responsible for bacterial spot of tomato in Ethiopia. Eur. J. Plant Pathol. 140: 677–688. Koenraadt H, van Betteray B, Germain R, Hiddink G, Jones JB, Oosterhof J, Rijlaarsdam A, Roorda P & Woudt B (2009) Development of specific primers for the molecular detection of bacterial spot of pepper and tomato. Proceedings of the 2nd International Symposium on Tomato Diseases. (Eds H. Saygili, F Sahin & Y Aysan) Acta Horticulturae 808: 99–102. Koike H (1965) The aluminium‐cap method for testing sugarcane varieties against leaf scald disease. Phytopathology 55: 317-319. Kyeon MS, Son SH, Noh YH, Kim YE, Lee HI, Cha JS (2016) Xanthomonas euvesicatoria Causes Bacterial Spot Disease on Pepper Plant in Korea. Plant Pathol. J. 32: 431-440. Lue YS, Deng WL, Wu YF, Cheng AS, Hsu ST, Tzeng KC (2010) Characterization of Xanthomonas Associated with Bacterial Spot of Tomato and Pepper in Taiwan. Plant Pathol. Bull. 19: 181-190. Pohronezny K, Stall RE, Canteros BI, Kegley M, Datnoff LE, Subramanya R (1992) Sudden Shift in the Prevalent Race of Xanthomonas-Campestris Pv Vesicatoria in Pepper Fields in Southern Florida. Plant Disease 76: 118-120. Schaad NW, Franken AAJM (1996) ISTA Handbook on Seed Health Testing Working Sheet No 50 (2nd Ed). Zurich: ISTA. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: 7537-7541. Sharon E, Okon Y, Bashan Y, Henis Y (1982) Detached Leaf Enrichment - a Method for Detecting Small Numbers of Pseudomonas-Syringae Pv Tomato and Xanthomonas-Campestris Pv Vesicatoria in Seed and Symptomless Leaves of Tomato and Pepper. Journal of Applied Bacteriology 53: 371-377. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85074 | - |
dc.description.abstract | 本論文架構分三大部分,第一章節為文獻探討。第二、三章節則分別為兩大試驗主軸的論述。第二章節為通過高低通量 RNA-seq 方法探討經由P1/HC-Pro主導的基因沉默效益引起的 ABA/鈣信號傳導反應,本研究運用次世代解序技術探索馬鈴薯病毒Y屬特有的 P1/HC-Pro 病毒抑制因子抑制轉錄後基因沉默 (PTGS)作用機制,研究蕪菁嵌紋病毒 (turnip mosaic virus, TuMV) P1/HC-Pro誘導的基因調控關係,對三種轉基因植物 (P1Tu、HC-ProTu 和 P1/HCTu) 進行了轉錄組分析比較,並使用高通量 (high-througput; HTP) 和低通量 (low-throughput; LTP) RNA-Seq 策略。結果顯示P1/HC-ProTu 干擾了信號通路中內源性離層酸(ABA) 的積累,特別是對乾旱逆境、冷逆境、老化和氣孔動力學的反應,LTP 網絡分析與本研究中 HTP 網絡具備相同的關鍵基因,顯示LTP的應用性。第二部分針對番茄種要細菌性斑點病,建立可快速檢定病原微生物活性的檢定技術,本研究結果顯示用 1% NaClO 進行 1 分鐘的表面消毒可將番茄種子的發芽率提高 90%。此外,在番茄種子披覆枯草芽孢桿菌可抑制原種子上病原Xanthomonas,包括抑制發芽之微生物,並將發芽率提高 90%。利用gumD 基因作為Xanthomonas屬病原體檢測標的,並且通過使用 gumD 的核酸產物為標的,減少以DNA作為分子檢測偽陽性的缺點。 | zh_TW |
dc.description.abstract | Two major topics are focus on this thesis. The first topic is focus on P1/HC-Pro viral suppressor to suppress posttranscriptional gene silencing (PTGS). To address the modulation of gene regulatory by turnip mosaic virus (TuMV) P1/HC-Pro (P1/HC-ProTu), a comparative transcriptome analysis of three types of transgenic plants (P1Tu, HC-ProTu, and P1/HC-ProTu) were conducted using both high-throughput (HTP) and low-throughput (LTP) RNA-Seq strategies. The results indicated that P1/HC-ProTu disturbed the endogenous abscisic acid (ABA) accumulation and the AGBA signaling pathway. Additionally, the integrated responses of stress-related genes, in particular to drought stress, cold stress, senescence, and stomatal dynamics, altered the expressions by the ABA/calcium signaling. Crosstalk among the ABA, jasmonic acid, and salicylic acid pathways might simultaneously modulate the stress responses triggered by P1/HC-ProTu. Furthermore, the LTP network revealed crucial genes in common with those identified by the HTP network, suggesting that the effectiveness of LTP is compareatble with the HTP profile. Our findings indicate that P1/HC-ProTu-mediated suppression in RNA silencing altered the ABA/calcium signaling and a wide range of stress responses. The second topic is focus on method for the seed quarantine. We demonstrated that surface sterilization with 1% NaClO for 1 min enhanced tomato seed germination by 90%. In addition, precoating Bacillus subtilis WG 6-14 onto tomato seeds also inhibited harmful microorganisms, including Xanthomonas, and improved germination up to 90%. We also demonstrated that the gumD gene of Xanthomonas spp. can be used for pathogen detection, and false positives were overcome by reverse transcription polymerase chain reaction (RT-PCR) detection with the gumD-specific primer set. We proposed sterilizing seeds and coating them with Bacillus subtilis WG 6-14 to inhibit harmful pathogen infection and using RT-PCR to eliminate false positives for this quarantine pathogen. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:41:58Z (GMT). No. of bitstreams: 1 U0001-2509202223433100.pdf: 6924935 bytes, checksum: 088c0b84a7d4625b974ff27af06f168a (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 誌謝…………………………………………………………………………… i 中文摘要……………………………………………………………………… ii Abstract…………………………………………………………….…….…… iii Table of contents………………………………………………….………..… v Chapter 1、Literature review………………………….…………………… 1 1. Seed/ Seedling healthy………………………………………………………. 2 2. Seed-borne pathogens………………………………………………………. 2 3. Pathogen detection……………………………………………………….…. 3 4. Virus disease………………………………………………………….……. 6 5. Potyvirus………………………………………………………………..…. 7 6. P1/HC-Pro…………………………………………………………………. 8 7. NGS and Contigview………………………………………………………... 8 8. ABA and Ca2+……………………………………………………….……... 9 9. References………………………………………………………………… 11 Chapter 2、Investigation of P1/HC-Pro-mediated ABA/calcium signaling responses via gene silencing through high- and low-through- put RNA-seq approaches 18 Abstract…………………………………………...…………………………. 19 1. Introduction …………………………………………………………….…. 20 2. Material and Methods………………………………………………………. 22 2.1. Plant Materials and Transgenic Plants……………………………………… 22 2.2. cDNA Library Construction and RNA Sequencing…………………………… 22 2.3. Differential Gene Expression Analysis and Functional Annotation………...…… 23 2.4. Quantification of Endogenous ABA and ABA Sensitivity Assay………….…… 24 2.5. Real-Time Quantitative PCR………………………………………..……… 25 2.6. Expression-Based Heatmaps and Principal Component Analysis (PCA) .……… 26 3. Results ………………………………………………………………….…. 27 3.1. P1/HC-ProTu Suppressor Triggers Plant Defense Responses………….…….…. 27 3.2. P1/HC-ProTu Alters ABA-Induced Immune Responses…………………….…. 27 3.3. Quantification of Endogenous ABA and ABA Sensitivity Assay………………. 29 3.4. P1/HC-ProTu Triggers Immune Responses in a Calcium-Dependent Manner……. 29 3.5. Validation of DEGs in the ABA and Ca2+ Pathways……………………….…. 30 3.6. P1/HC-ProTu Triggers Drought Response and Stomatal Closure…………….…. 31 3.7. P1/HC-ProTu Stimulates Cold Response and Leaf Senescence………….……... 32 3.8. Comparison of the HTP and LTP Profiles………….….……….………….…. 34 3.9. Functional Classification of the DEGs Identified from the LTP Profile…….….... 36 4. Discussion……………………………………………………………….…. 38 4.1. P1/HC-ProTu Alters ABA and the Other Hormones Accumulations………….… 38 4.2. P1/HC-ProTu Might Alter ABA and Calcium Signaling Crosstalk during Stomatal Closure and Drought Stress…………………………………………….….. 39 4.3. The LTP NGS Strategy Enables the Collection of a Miniature of the HTP Sequencing Data…………………………………………….……………. 40 5. Conclusions………………..………………………………….……………. 42 6. References………………..………………………………….…………….. 43 7. Tables and figures………………………………………….……………….. 48 Chapter 3、Enhancement of tomato seed germination with precoating Bacillus subtilis WG 6-14 and investigation of living Xanthomonas detection for seed quarantine 76 Abstract 77 1. Introduction 78 2. Material and Methods 79 3. Results and discussion 81 4. References 88 5. Tables and figures 91 | |
dc.language.iso | en | |
dc.title | 比較不同通量RNA-Seq在 P1/HC-Pro介導之基因沉默效應與開發可檢測具活性Xanthomonas perforans之技術 | zh_TW |
dc.title | Comparison of different RNA-Seq throughputs of P1/HC-Pro-mediated silencing suppression, and establishing a molecular detection method for viable Xanthomonas perforans | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳仁治(Jen-chih Chen),劉啟德(Chi-Te Liu),張雅君(Ya-Chun Chang),陳荷明(Ho-Ming Chen) | |
dc.subject.keyword | 離層酸,次世代高低通量解序分析,P1/HC-ProTu,鈣信號,逆境反應,Xanthomonas 屬,枯草芽孢桿菌 6-14,反轉錄酶PCR,發芽,種子檢疫, | zh_TW |
dc.subject.keyword | ABA signaling,HTP-Seq,LTP-Seq,P1/HC-ProTu,calcium signaling,stress response,Xanthomonas,,Bacillus subtilis 6-14,RT-PCR,germination,seed quarantine, | en |
dc.relation.page | 98 | |
dc.identifier.doi | 10.6342/NTU202204026 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-09-28 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物科技研究所 | zh_TW |
dc.date.embargo-lift | 2022-09-30 | - |
顯示於系所單位: | 生物科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2509202223433100.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.76 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。