Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85050
標題: 標準化物種涵蓋率之Jaccard相異性指標估計方法
A Novel Estimator of Jaccard Dissimilarity Index by Standardizing Richness Coverage
作者: LIANG HSIANG O YANG
歐陽良祥
指導教授: 邱春火(CHUN-HUO CHIU)
關鍵字: 相異性指標,稀釋與外插曲線,樣本涵蓋率,物種數,標準化,
dissimilarity index,rarefaction and extrapolation curve,sample coverage,number of species,standardization,
出版年 : 2022
學位: 碩士
摘要: 過去在計算兩群落的Jaccard相異性指標時,研究人員主要根據三種方法進行估計,分別為觀測值估計方法、物種數估計方法及樣本涵蓋率標準化方法。本文主要透過樣本涵蓋率標準化方法進行修正,以往樣本涵蓋率的定義是指樣本中出現物種的總相對豐富度佔整個群落的比例,文獻指出當不同群落的物種相對豐富度有相似的異質性時,兩群落在相同樣本涵蓋率的樣本物種數比例能接近兩群落真正的物種數比例。因為Jaccard相異性指標可視為平均群落物種數佔混合群落物種數比例的轉換,因此可透過標準化樣本涵蓋率來進行Jaccard相異性指標的估計。然而,在兩群落物種豐富度的異質性差異很大時,傳統樣本涵蓋率標準方法的樣本物種數比例無法呈現真實群落物種數的比值。因此,本文提出了一個新的樣本完整性指標Richness coverage來估計Jaccard相異性指標,修正了以往標準化兩地區抽樣資料時,物種豐富度結構所造成的影響,以物種出現與否的角度,重新定義物種樣本涵蓋率。並根據文獻中估計物種數的概念,樣本中的稀有物種佔最多未出現物種的資訊,因此將抽樣資料分為豐富物種及稀有物種,並將樣本中的稀有物種資料作為樣本涵蓋率標準化的基準。為了比較本文提出之估計量與傳統估計方式,本文藉由電腦模擬的方式驗證各估計方法的統計表現,結果呈現相較其它傳統的方法,本文所提出的方法在大部分的母體設定中,在平均偏差、均方根誤差以及 95% 信賴區間涵蓋率都有明顯較佳的表現。最後以兩筆實例資料做應用解說,一筆為伊比利蜘蛛資料集,將此樣本資料視為抽樣母體做模擬研究,以及另一筆資料為巴西兩棲類樣本資料,透過估計去做分析並提出與以往不同的觀點,最後是將本文所推導的新估計方法,透過R軟體寫成互動式網頁以利使用者使用。
In the past, when calculating the Jaccard dissimilarity index of the two communities, researchers mainly estimated based on three methods. They can use the empirical method by observed data, species estimation by estimating unseen species, or the sample coverage standardization method. This paper is mainly corrected by the standardization method of sample coverage. The definition of sample coverage is the total relative abundance of observed species in the entire community. The literature points out that when the relative abundance of species in different communities has similar heterogeneity, the proportion of species with the same sample coverage in the two communities can be close to the true proportion of species in the two communities. Because the Jaccard dissimilarity index can be regarded as the ratio of the average number of species in the two communities to the number of species in the mixed community, the Jaccard dissimilarity index can be estimated by standardized sample coverage. However, when the species richness structure of the two communities is very different, the traditional quantitative method of sample coverage cannot close the true ratio of the number of species in the communities in calculating the ratio of the two communities under each sample coverage. Therefore, this paper redefines the sample coverage from the presence or absence of species and derives its rarefaction estimation methods. Then, according to the concept of estimating the number of species in the literature, the rare species in the sample contain the most unseen species information, so the sampling data are divided into abundant species and rare species, and the rare species data in the sample is used as the standard for the standardization of the sample coverage. In order to compare the proposed estimator in this paper with the traditional estimation method, we use computer simulation to verify. And we found that compared with other traditional methods, the proposed method in this paper has significantly improved which includes bias and a 95% confidence interval coverage rate in most cases. We also applied our proposed method to two real data. One of the datasets is the Iberian spider data set, we use this dataset as a population for simulation, and the other dataset is the Brazilian amphibian data, we use our proposed method for analysis and give different viewpoints. Finally, we develop the interactive website in the R language for the convenience use of users.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85050
DOI: 10.6342/NTU202202482
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2022-08-19
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
U0001-1708202209324300.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.7 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved