請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85044
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李妮鍾(Ni-Chung Lee) | |
dc.contributor.author | Chi-Chien Wu | en |
dc.contributor.author | 吳季謙 | zh_TW |
dc.date.accessioned | 2023-03-19T22:40:05Z | - |
dc.date.copyright | 2022-10-03 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-16 | |
dc.identifier.citation | 1.Richter T, Nestler-Parr S, Babela R, et al. Rare Disease Terminology and Definitions-A Systematic Global Review: Report of the ISPOR Rare Disease Special Interest Group. Value Health 2015;18:906-14. 2.Nguengang Wakap S, Lambert DM, Olry A, et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur J Hum Genet 2020;28:165-173. 3.Chien S, Su PH, Chen SJ. Development of genetic counseling services in Taiwan. J Genet Couns 2013;22:839-43. 4.Hsu JC, Wu HC, Feng WC, et al. Disease and economic burden for rare diseases in Taiwan: A longitudinal study using Taiwan's National Health Insurance Research Database. PLoS One 2018;13:e0204206. 5.Griggs RC, Batshaw M, Dunkle M, et al. Clinical research for rare disease: opportunities, challenges, and solutions. Mol Genet Metab 2009;96:20-6. 6.Wright CF, FitzPatrick DR, Firth HV. Paediatric genomics: diagnosing rare disease in children. Nat Rev Genet 2018;19:253-268. 7.Sangger. F, Nicklen. S, Coulson. AR. DNA sequencing with chain-terminating inhibitors. PNAS 1977;74:5463–5467. 8.Boycott KM, Vanstone MR, Bulman DE, et al. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet 2013;14:681-91. 9.van Dijk EL, Auger H, Jaszczyszyn Y, et al. Ten years of next-generation sequencing technology. Trends Genet 2014;30:418-26. 10.Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet 2010;11:31-46. 11.Liu Z, Roberts R, Shi T, et al. Editorial: Advancing Genomics for Rare Disease Diagnosis and Therapy Development. Front Pharmacol 2020;11:598889. 12.Investigators GPP, Smedley D, Smith KR, et al. 100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care - Preliminary Report. N Engl J Med 2021;385:1868-1880. 13.Gilissen C, Hehir-Kwa JY, Thung DT, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature 2014;511:344-7. 14.Boycott KM, Hartley T, Biesecker LG, et al. A Diagnosis for All Rare Genetic Diseases: The Horizon and the Next Frontiers. Cell 2019;177:32-37. 15.Rabbani. B, Tekin. M, Mahdieh. N. The promise of whole-exome sequencing in medical genetics. J. Hum Genet 2014; 59: 5–15. 16.Lander. ES, Botstein. D. Homozygosity mapping a way to map human recessive traits with the DNA of inbred children. Science 1987;236:1568–1570. 17.Bittles AH, Black ML. Evolution in health and medicine Sackler colloquium: Consanguinity, human evolution, and complex diseases. Proc Natl Acad Sci U S A 2010;107 Suppl 1:1779-86. 18.Wakeling MN, Laver TW, Wright CF, et al. Homozygosity mapping provides supporting evidence of pathogenicity in recessive Mendelian disease. Genet Med 2019;21:982-986. 19.Jaber. L, Halpern. GJ, Shohat. M. The Impact of Consanguinity Worldwide. community genetics 1998;1:12-17. 20.Fareed M, Afzal M. Genetics of consanguinity and inbreeding in health and disease. Ann Hum Biol 2017;44:99-107. 21.Broman KW, Weber JL. Long homozygous chromosomal segments in reference families from the centre d'Etude du polymorphisme humain. Am J Hum Genet 1999;65:1493-500. 22.Gibson J, Morton NE, Collins A. Extended tracts of homozygosity in outbred human populations. Hum Mol Genet 2006;15:789-95. 23.McQuillan R, Leutenegger AL, Abdel-Rahman R, et al. Runs of homozygosity in European populations. Am J Hum Genet 2008;83:359-72. 24.Pemberton TJ, Absher D, Feldman MW, et al. Genomic patterns of homozygosity in worldwide human populations. Am J Hum Genet 2012;91:275-92. 25.Grote L, Myers M, Lovell A, et al. Variability in laboratory reporting practices for regions of homozygosity indicating parental relatedness as identified by SNP microarray testing. Genet Med 2012;14:971-6. 26.Pippucci T, Magi A, Gialluisi A, et al. Detection of runs of homozygosity from whole exome sequencing data: state of the art and perspectives for clinical, population and epidemiological studies. Hum Hered 2014;77:63-72. 27.Sousa M, Santos R, Pereira R, et al. Homozygosity Mapping using Whole-Exome Sequencing: A Valuable Approach for Pathogenic Variant Identification in Genetic Diseases. Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies, 2017:210-216. 28.Oliveira J, Pereira R, Santos R, et al. Evaluating Runs of Homozygosity in Exome Sequencing Data - Utility in Disease Inheritance Model Selection and Variant Filtering. Biomedical Engineering Systems and Technologies, 2018:268-288. 29.Vahidnezhad H, Youssefian L, Jazayeri A, et al. Research Techniques Made Simple: Genome-Wide Homozygosity/Autozygosity Mapping Is a Powerful Tool for Identifying Candidate Genes in Autosomal Recessive Genetic Diseases. J Invest Dermatol 2018;138:1893-1900. 30.Gonzales PR, Andersen EF, Brown TR, et al. Interpretation and reporting of large regions of homozygosity and suspected consanguinity/uniparental disomy, 2021 revision: A technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2022;24:255-261. 31.Baran Y, Subramaniam M, Biton A, et al. The landscape of genomic imprinting across diverse adult human tissues. Genome Res 2015;25:927-36. 32.Roosing S, van den Born LI, Hoyng CB, et al. Maternal uniparental isodisomy of chromosome 6 reveals a TULP1 mutation as a novel cause of cone dysfunction. Ophthalmology 2013;120:1239-46. 33.Nakashima M, Negishi Y, Hori I, et al. A case of early-onset epileptic encephalopathy with a homozygous TBC1D24 variant caused by uniparental isodisomy. Am J Med Genet A 2019;179:645-649. 34.Monk D, Mackay DJG, Eggermann T, et al. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet 2019;20:235-248. 35.Hoppman N, Rumilla K, Lauer E, et al. Patterns of homozygosity in patients with uniparental disomy: detection rate and suggested reporting thresholds for SNP microarrays. Genet Med 2018;20:1522-1527. 36.Seelow D, Schuelke M, Hildebrandt F, et al. HomozygosityMapper--an interactive approach to homozygosity mapping. Nucleic Acids Res 2009;37:W593-9. 37.Seelow D, Schuelke M. HomozygosityMapper2012--bridging the gap between homozygosity mapping and deep sequencing. Nucleic Acids Res 2012;40:W516-20. 38.Gormez Z, Bakir-Gungor B, Sagiroglu MS. HomSI: a homozygous stretch identifier from next-generation sequencing data. Bioinformatics 2014;30:445-7. 39.Quinodoz M, Peter VG, Bedoni N, et al. AutoMap is a high performance homozygosity mapping tool using next-generation sequencing data. Nat Commun 2021;12:518. 40.Yi M, Zhao Y, Jia L, et al. Performance comparison of SNP detection tools with illumina exome sequencing data--an assessment using both family pedigree information and sample-matched SNP array data. Nucleic Acids Res 2014;42:e101. 41.Salmaninejad A, Bedoni N, Ravesh Z, et al. Whole exome sequencing and homozygosity mapping reveals genetic defects in consanguineous Iranian families with inherited retinal dystrophies. Sci Rep 2020;10:19413. 42.Ceballos FC, Joshi PK, Clark DW, et al. Runs of homozygosity: windows into population history and trait architecture. Nat Rev Genet 2018;19:220-234. 43.Matalonga L, Laurie S, Papakonstantinou A, et al. Improved Diagnosis of Rare Disease Patients through Systematic Detection of Runs of Homozygosity. J Mol Diagn 2020;22:1205-1215. 44.Hao Z, Lv D, Ge Y, et al. RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ Comput Sci 2020;6:e251. 45.Clark MJ, Chen R, Lam HY, et al. Performance comparison of exome DNA sequencing technologies. Nat Biotechnol 2011;29:908-14. 46.Alkuraya FS. Homozygosity mapping: one more tool in the clinical geneticist's toolbox. Genet Med 2010;12:236-9. 47.Charlesworth D, Willis JH. The genetics of inbreeding depression. Nat Rev Genet 2009;10:783-96. 48.Woods CG, Cox J, Springell K, et al. Quantification of homozygosity in consanguineous individuals with autosomal recessive disease. Am J Hum Genet 2006;78:889-896. 49.Abbas HA, Yunis K. The effect of consanguinity on neonatal outcomes and health. Hum Hered 2014;77:87-92. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85044 | - |
dc.description.abstract | 背景及目的:同型合子定位(Homozygosity mapping)是偵測人類基因組中連續的同型合子基因型區間(ROH)的有效方法。ROH是重要的遺傳標記,特別是在近親通婚的家族中。近期的研究指出同型合子會增加罹患罕見疾病的風險。本研究的目的是想透過系統性的偵測ROH來重新分析疑似罕見遺傳疾病患者的全外顯子定序(WES)資料,並找出台灣族群的ROH分布模式。 方法:針對來自台大醫院的760名疑似遺傳疾病的患者進行回顧性分析。他們的WES資料是由三種不同的定序平台所分析。我們將使用AutoMap分析軟體來找出個案的ROH區間,ROH在染色體上的分布將透過R語言的detectRUNS及RIdeogram套件來進行視覺化呈現。 結果:全外顯子組的平均ROH大小為82.78 ± 28.52 Mb,個案平均下來會有36.96 ± 7.09個ROH區間。根據近親通婚的分類標準,760名個案在非近親通婚、不確定、可能為近親通婚、近親通婚的百分比(平均大小)分別為0.4% (12.39 ± 3.90 Mb)、46.3% (66.53 ± 10.20 Mb)、50.8% (91.76 ± 9.53 Mb)以及2.5% (212.61 ± 69.40 Mb)。分析後的結果顯示有17名疑似罕見遺傳疾病患者可能是近親通婚的後代,並發現有2名個案是單親源二倍體,其兩條第五號染色體均來自父親或母親。在經過多個篩選步驟後,我們在29名發現候選基因的個案中找到8名個案的致病變異。 結論:透過系統性的偵測ROH區間在臨床上是診斷罕見疾病患者的可行方法。 | zh_TW |
dc.description.abstract | Background & Aim:Homozygosity mapping is a powerful method to detect the regions of consecutive homozygous genotypes, runs of homozygosity (ROH), in a person’s genome. The ROH patterns are crucial genetic marker, especially in consanguinity. Recently, homozygosity has been considered as an increased risk of rare diseases (RDs). Our aim was to reanalyze of whole exome sequencing (WES) data from patients with suspected rare genetic disease by systemic detection of ROH and find the ROH pattern in Taiwanese population. Method:760 subjects with suspected genetic disorders from National Taiwan University Hospital were retrospectively analyzed. Their genome data was identified by three different exome sequencing platforms. The ROH regions were identified by using the AutoMap software. The visualization of ROH pattern on chromosomes was drawn by using R package detectRUNS and RIdeogram. Result:Mean homozygousity region size in each exome was 82.78 ± 28.52 Mb, with average 36.96 ± 7.09 homozygous region each individual. Based on classification of consanguineous status, the percentage (mean size) in Non-consanguinity, Uncertain, Probable consanguinity, and Consanguinity were 0.4% (12.39 ± 3.90 Mb), 46.3% (66.53 ± 10.20 Mb), 50.8% (91.76 ± 9.53 Mb), and 2.5% (212.61 ± 69.40 Mb), respectively. The data implied that 17 patients were born of consanguineous union and 2 individuals with isodisomy uniparental disomy on chromosomes 5. After multistep filtering, we identified the disease-causing variant in 8 cases among 29 subjects with candidate genes. Conclusion:Systemic detection of ROH is a useful tool for diagnosis of RD patients in clinical practice. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:40:05Z (GMT). No. of bitstreams: 1 U0001-1408202212441700.pdf: 4799695 bytes, checksum: d4867c3bd2edebf95e9c526faa4e91aa (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 致謝...i 中文摘要...ii Abstract...iii Content...v List of Figures...vii List of Tables...viii Chapter 1 Introduction...1 1.1 Rare genetic disease definition and its situation in Taiwan...1 1.2 Clinical diagnosis by genetic analysis...2 1.3 Application of WES-based HM and interpretation of ROH patterns...5 1.4 Bioinformatic tools used for HM...6 Chapter 2 The Specific aim of this project...8 2.1 Reanalysis of WES data by systemic detection of ROH...8 2.2 Finding the ROH patterns in Taiwanese population...8 Chapter 3 Methodology...9 3.1 Patient enrollment and data collection...9 3.2 Identification of ROH...9 3.3 The workflow to identify the disease-causing variants...10 3.4 Website resource...10 Chapter 4 Results...12 4.1 Reanalysis WES data by AutoMap software...12 4.2 Genomic ROH patterns in Taiwanese population...13 4.3 Case report...13 Chapter 5 Discussion...18 Chapter 6 Conclusions and Future work...21 Reference...39 Appendix...43 | |
dc.language.iso | en | |
dc.title | 藉由系統性重新分析全外顯子定序之同型合子序列長度以篩選罕見疾病候選基因 | zh_TW |
dc.title | Reanalyze exome data to search candidate genes for rare diseases by systemic detection of runs of homozygosity | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.author-orcid | 0000-0002-9648-3398 | |
dc.contributor.oralexamcommittee | 胡務亮(Wuh-Liang Hwu),簡穎秀 (Yin-Hsiu Chien) | |
dc.subject.keyword | 同型合子定位,同型合子基因型區間,近親通婚,罕見遺傳疾病,單親源二倍體, | zh_TW |
dc.subject.keyword | Homozygosity mapping,Runs of homozygosity,Consanguinity,Rare genetic disease,Uniparental disomy, | en |
dc.relation.page | 77 | |
dc.identifier.doi | 10.6342/NTU202202378 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-08-17 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
dc.date.embargo-lift | 2022-10-03 | - |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1408202212441700.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.69 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。