Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85033
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖先順(Hsien-Shun Liao)
dc.contributor.authorHsin-Ping Hsuen
dc.contributor.author許心平zh_TW
dc.date.accessioned2023-03-19T22:39:23Z-
dc.date.copyright2022-08-22
dc.date.issued2022
dc.date.submitted2022-08-17
dc.identifier.citation[1] Wong, K. V., & Hernandez, A. (2012). A review of additive manufacturing. ISRN Mechanical Engineering, 2012. [2] Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C. B., ... & Zavattieri, P. D. (2015). The status, challenges, and future of additive manufacturing in engineering. Computer-Aided Design, 69, 65-89. [3] 德芮達科技(2020)。認識3D列印成型技術-粉末床融合成型 (Powder Bed Fusion) - SLS(Selective Laser Sintering), SLM(Selective Laser Melting)。檢自 https://www.detekt.com.tw/network/detail/91 [4] Gibson, I., Rosen, D. W., Stucker, B. & Khorasani, M. (2021). Additive manufacturing technologies. Cham, Switzerland: Springer. [5] Engineering fundamentals. (2022). Rapid Prototyping - Laminated Object Manufacturing. Retrieved from https://www.efunda.com/processes/rapid_prototyping/lom.cfm [6] Swainson, W. K. (1977). Method, Medium and Apparatus for Producing Three-Dimensional Figure Product. U.S. Patent No. 4,041,476. [7] Huang, J., Qin, Q., & Wang, J. (2020). A review of stereolithography: Processes and systems. Processes, 8(9). [8] Herbert, J. A. (1982). Solid object generation. Journal of applied photographic engineering, 8(4), 185-188. [9] Li, X., Mao, H., Pan, Y., & Chen, Y. (2019). Mask video projection-based stereolithography with continuous resin flow. Journal of Manufacturing Science and Engineering, 141(8). [10] Shusteff, M., Browar, A. E., Kelly, B. E., Henriksson, J., Weisgraber, T. H., Panas, R. M., ... & Spadaccini, C. M. (2017). One-step volumetric additive manufacturing of complex polymer structures. Science advances, 3(12). [11] Chang, T. J., Vaut, L., Voss, M., Ilchenko, O., Nielsen, L. H., Boisen, A., & Hwu, E. T. (2021). Submicron scale stereolithography using HD-DVD optical pickup unit. Laser 3D Manufacturing VIII, 11677. [12] Chang, T. J., Vaut, L., Voss, M., Nielsen, L. H., Hwu, E. T., & Boisen, A. (2019). HD-DVD Based Microscale 3D Printer. Paper presented at the 45th International conference on Micro and Nano Engineering, Rhodes, Greece. [13] Hwu, E. T., Voss, M., Chang, T. J., Liao, H. S., & Boisen, A. (2021). Hacking blu-ray drives for high-throughput 3D printing. Laser 3D Manufacturing VIII, 11677. [14] Schmidleithner, C., & Kalaskar, D. M. (2018). Stereolithography. 3D printing, 1-22. [15] 黃英碩、胡恩德、黃光裕、張嘉升、廖先順、王偉珉、…黃宣富(2014)。像散式光學偵測系統:奈米量測新利器。科儀新知,(200),46-65。 [16] 曾柏魁(2022)。極座標立體微影系統之設計與開發 Design and Development of a Stereolithography System in Polar Coordinates。未出版之碩士論文,國立臺灣大學機械工程研究所,臺北市。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85033-
dc.description.abstract立體微影(Stereolithography, SLA)是加法製造(Additive manufacturing, AM)的一種,利用特定波長的光固化聚合液態之光固化樹脂以成形物體。相關技術不斷朝向提高列印的精度與速度發展。然而,其列印速度、面積與精度在技術上難以兼得,速度提升與面積加大往往需要犧牲部分精度,反之亦然。本論文致力於開發改善一套立體微影系統,使用伺服主軸馬達與步進滑台作列印光碟的極座標定位,這樣的配置擁有連續轉動高速列印的優勢,而且具有高速列印大面積微結構之潛力。系統使用低成本、體積小且聚焦光點小之藍光光碟讀取頭(Optical pickup unit, OPU)作為光源,以達到微米尺度之製作精度。此外,為使OPU雷射在列印時能穩定聚焦於基底光碟表面,系統採用雙讀取頭分別配置於基底光碟之上方與下方。上方OPU作為光固化之光源使用。下方OPU則利用對焦誤差訊號(Focus error signal, FES)做為回饋參考訊號,並同步控制上下方OPU內部之音圈馬達(Voice coil motor, VCM)進行即時對焦調整。欲列印圖形經過程式以極座標轉換對應旋轉列印之位置,配合解碼主軸馬達編碼器訊號控制藍光開關列印。系統可以穩定列印之最高線速度達80 mm/s,列印連續線之線寬約22 μm,徑向位移最小達1.2 μm,角度方向定位解析度最小達到1.25 μm,得以清楚列印小至長寬16 × 18 μm、線寬3 μm之數字圖形。在達到微米級列印精度的同時,亦可以列印公分級大小之圖形。zh_TW
dc.description.abstractStereolithography is a type of additive manufacturing that uses a specific wavelength of light to cure and polymerize photocurable resin to form objects. Related technologies continue to improve the accuracy and speed of printing. However, it is technically difficult to have high printing speed, large printing area, and high accuracy at the same time. The increase in speed and area often sacrifice accuracy, and vice versa. This research is devoted to developing and improving a stereolithography system, using servo spindle motor and stepper linear actuator as the polar coordinate positioning of printed disc. Such configuration has the advantage of continuous rotation and high-speed printing, and has the potential to print large-area microstructures at high speed. The system uses Blu-ray optical pickup unit which is lost-cost, compact and has small focus spot as the light source to achieve micro-scale fabrication accuracy. In addition, in order to make the OPU laser focus stably on the surface of the base disc during printing, the system adopts dual pickup heads, which are respectively arranged above and below the base disc. The upper OPU is used as a light source for light curing. The lower OPU uses the focus error signal as a feedback reference signal, and synchronously controls the voice coil motor inside the upper and lower OPUs to make instant focus adjustments. The printing pattern is converted to polar coordinates corresponding to the position of spin printing. And control the Blu-ray switch with the decoded spindle motor encoder signal to print. The system can stably print with a maximum linear speed of 80 mm/s, a line width of about 22 μm for continuous printing, a minimum radial displacement of 1.2 μm, and a minimum angular positioning resolution of 1.25 μm. Patterns as small as 16 × 18 μm in length and width can be clearly printed with 3 μm line width. While achieving micron-level printing accuracy, it can also print patterns in the size of centimeters.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:39:23Z (GMT). No. of bitstreams: 1
U0001-0908202215225100.pdf: 9502222 bytes, checksum: 0febe2f421be31e02071a000b9d1b339 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 1 1.2.1 加法製造 1 1.2.2 立體微影 7 1.2.3 基於OPU的立體微影 12 1.3 研究目標 17 第二章 研究方法與原理 18 2.1 微影原理 18 2.2 列印製造流程 19 2.2.1 高速旋轉塗佈 19 2.2.2 手動對焦與回饋控制 20 2.2.3 曝光列印 20 2.2.4 清洗與觀察 21 第三章 系統架構與設計 22 3.1 系統架構 22 3.2 曝光系統 24 3.2.1 藍光光碟讀取頭 24 3.2.2 讀取頭控制板 24 3.2.3 光固化樹脂 27 3.2.4 遮罩設計 27 3.3 定位系統 28 3.3.1 步進馬達滑台 28 3.3.2 主軸伺服馬達 28 3.4 控制系統 29 3.4.1 嵌入式控制器 29 3.4.2 步進馬達驅動器 29 3.4.3 伺服馬達驅動器 29 3.4.4 電源供應器 29 3.4.5 控制電路 29 3.5 控制列印流程 32 第四章 實驗結果與討論 40 4.1 圓周列印 40 4.1.1 連續線列印 40 4.1.2 虛線列印 42 4.1.3 網狀列印 45 4.2 圖案列印 47 4.2.1 NTU文字列印 47 4.2.2 解析度測試圖列印 48 第五章 結論與未來展望 51 5.1 結論 51 5.2 未來展望 51 參考文獻 52 附錄A、嵌入式控制器說明書 54 附錄B、步進馬達驅動器說明書 57 附錄C、主軸馬達與控制器規格表 58
dc.language.isozh-TW
dc.subject旋轉列印zh_TW
dc.subject3D列印zh_TW
dc.subject立體微影zh_TW
dc.subject光碟讀取頭zh_TW
dc.subjectStereolithographyen
dc.subjectOPUen
dc.subjectSpin printingen
dc.subject3D printingen
dc.title微米級旋轉列印立體微影系統之開發zh_TW
dc.titleDevelopment of a Micro-scale Spin Printing Stereolithography Systemen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡恩德(En-Te Hwu),高豐生(Feng-Sheng Kao)
dc.subject.keyword3D列印,立體微影,光碟讀取頭,旋轉列印,zh_TW
dc.subject.keyword3D printing,Stereolithography,OPU,Spin printing,en
dc.relation.page59
dc.identifier.doi10.6342/NTU202202208
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
dc.date.embargo-lift2022-08-22-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-0908202215225100.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
9.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved