請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85029
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡懷楨(Huai-Jen Tsai) | |
dc.contributor.author | Wei-Lin Lai | en |
dc.contributor.author | 賴韋霖 | zh_TW |
dc.date.accessioned | 2023-03-19T22:39:08Z | - |
dc.date.copyright | 2022-09-30 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-27 | |
dc.identifier.citation | Ahuja, C. S., Nori, S., Tetreault, L., Wilson, J., Kwon, B., Harrop, J., Choi, D., & Fehlings, M. G. (2017). Traumatic Spinal Cord Injury-Repair and Regeneration. Neurosurgery, 80(3S), S9–S22. doi:10.1093/neuros/nyw080 Alunni, A., & Bally-Cuif, L. (2016). A comparative view of regenerative neurogenesis in vertebrates. Development (Cambridge, England), 143(5), 741–753. doi:10.1242/dev.122796 Alvarez-Buylla, A., Seri, B., & Doetsch, F. (2002). Identification of neural stem cells in the adult vertebrate brain. Brain research bulletin, 57(6), 751–758. doi:10.1016/s0361-9230(01)00770-5 Amasaki, H., Ogawa, M., Nagasao, J., Mutoh, K., Ichihara, N., Asari, M., & Shiota, K. (2003). Distributional changes of BrdU, PCNA, E2F1 and PAL31 molecules in developing murine palatal rugae. Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft, 185(6), 517–523. doi:10.1016/s0940-9602(03)80116-4 Anjum, A., Yazid, M. D., Fauzi Daud, M., Idris, J., Ng, A., Selvi Naicker, A., Ismail, O., Athi Kumar, R. K., & Lokanathan, Y. (2020). Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. International journal of molecular sciences, 21(20), 7533. doi:10.3390/ijms21207533 Bradbury, E. J., & Burnside, E. R. (2019). Moving beyond the glial scar for spinal cord repair. Nature communications, 10(1), 3879. doi:10.1038/s41467-019-11707-7 Brody, J. R., Kadkol, S. S., Mahmoud, M. A., Rebel, J. M., & Pasternack, G. R. (1999). Identification of sequences required for inhibition of oncogene-mediated transformation by pp32. The Journal of biological chemistry, 274(29), 20053–20055. doi:10.1074/jbc.274.29.20053 Brody, J. R., Kadkol, S. S., Hauer, M. C., Rajaii, F., Lee, J., & Pasternack, G. R. (2004). pp32 reduction induces differentiation of TSU-Pr1 cells. The American journal of pathology, 164(1), 273–283. doi:10.1016/S0002-9440(10)63117-3 Brody, J. R., Witkiewicz, A., Williams, T. K., Kadkol, S. S., Cozzitorto, J., Durkan, B., Pasternack, G. R., & Yeo, C. J. (2007). Reduction of pp32 expression in poorly differentiated pancreatic ductal adenocarcinomas and intraductal papillary mucinous neoplasms with moderate dysplasia. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc, 20(12), 1238–1244. doi:10.1038/modpathol.3800974 Cajal S. R. Y. (1928). In: Degeneration and Regeneration of the Nervous System. New York: Oxford University Press, American Branch 1, 2. Chapouton, P., Jagasia, R., & Bally-Cuif, L. (2007). Adult neurogenesis in non-mammalian vertebrates. BioEssays : news and reviews in molecular, cellular and developmental biology, 29(8), 745–757. doi:10.1002/bies.20615 Chapouton, P., & Godinho, L. (2010). Neurogenesis. Methods in cell biology, 100, 73–126. doi:10.1016/B978-0-12-384892-5.00004-9 Chen, S., Li, B., Grundke-Iqbal, I., & Iqbal, K. (2008). I1PP2A affects tau phosphorylation via association with the catalytic subunit of protein phosphatase 2A. The Journal of biological chemistry, 283(16), 10513–10521. doi:10.1074/jbc.M709852200 Cigliola, V., Becker, C. J., & Poss, K. D. (2020). Building bridges, not walls: spinal cord regeneration in zebrafish. Disease models & mechanisms, 13(5), dmm044131. doi:10.1242/dmm.044131 Cosacak, M. I., Bhattarai, P., Bocova, L., Dzewas, T., Mashkaryan, V., Papadimitriou, C., Brandt, K., Hollak, H., Antos, C. L., & Kizil, C. (2017). Human TAUP301L overexpression results in TAU hyperphosphorylation without neurofibrillary tangles in adult zebrafish brain. Scientific reports, 7(1), 12959. doi:10.1038/s41598-017-13311-5 Costanzo, R. V., Vilá-Ortíz, G. J., Perandones, C., Carminatti, H., Matilla, A., & Radrizzani, M. (2006). Anp32e/Cpd1 regulates protein phosphatase 2A activity at synapses during synaptogenesis. The European journal of neuroscience, 23(2), 309–324. doi:10.1111/j.1460-9568.2005.04555.x Courtine, G., & Sofroniew, M. V. (2019). Spinal cord repair: advances in biology and technology. Nature medicine, 25(6), 898–908. doi:10.1038/s41591-019-0475-6 Doetsch F. (2003). The glial identity of neural stem cells. Nature neuroscience, 6(11), 1127–1134. doi:10.1038/nn1144 Flanagan-Steet, H., Fox, M. A., Meyer, D., & Sanes, J. R. (2005). Neuromuscular synapses can form in vivo by incorporation of initially aneural postsynaptic specializations. Development (Cambridge, England), 132(20), 4471–4481. doi:10.1242/dev.02044 Fries, B., Heukeshoven, J., Hauber, I., Grüttner, C., Stocking, C., Kehlenbach, R. H., Hauber, J., & Chemnitz, J. (2007). Analysis of nucleocytoplasmic trafficking of the HuR ligand APRIL and its influence on CD83 expression. The Journal of biological chemistry, 282(7), 4504–4515. doi:10.1074/jbc.M608849200 Götz, M. (2012). Radial glial cells. In: Neuroglia. Kettenmann, H. & Ransom, B. R. (Eds.), (pp. 50–61). Oxford University Press. Grossman, S. D., Rosenberg, L. J., & Wrathall, J. R. (2001). Temporal-spatial pattern of acute neuronal and glial loss after spinal cord contusion. Experimental neurology, 168(2), 273–282. doi:10.1006/exnr.2001.7628 Grandel, H., Kaslin, J., Ganz, J., Wenzel, I., & Brand, M. (2006). Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. Developmental biology, 295(1), 263–277. doi:10.1016/j.ydbio.2006.03.040 Habrukowich, C., Han, D. K., Le, A., Rezaul, K., Pan, W., Ghosh, M., Li, Z., Dodge-Kafka, K., Jiang, X., Bittman, R., & Hla, T. (2010). Sphingosine interaction with acidic leucine-rich nuclear phosphoprotein-32A (ANP32A) regulates PP2A activity and cyclooxygenase (COX)-2 expression in human endothelial cells. The Journal of biological chemistry, 285(35), 26825–26831. doi:10.1074/jbc.M110.147058 Hoffarth, S., Zitzer, A., Wiewrodt, R., Hähnel, P. S., Beyer, V., Kreft, A., Biesterfeld, S., & Schuler, M. (2008). pp32/PHAPI determines the apoptosis response of non-small-cell lung cancer. Cell death and differentiation, 15(1), 161–170. doi:10.1038/sj.cdd.4402256 Huyton, T., & Wolberger, C. (2007). The crystal structure of the tumor suppressor protein pp32 (Anp32a): structural insights into Anp32 family of proteins. Protein science : a publication of the Protein Society, 16(7), 1308–1315. doi:10.1110/ps.072803507 Imamachi, K., Higashino, F., Kitamura, T., Kakuguchi, W., Yanagawa-Matsuda, A., Ishikawa, M., Kitagawa, Y., Totsuka, Y., & Shindoh, M. (2014). pp32r1 controls the decay of the RNA-binding protein HuR. Oncology reports, 31(3), 1103–1108. doi:10.3892/or.2013.2956 Jandial, R., Singec, I., Ames, C. P., & Snyder, E. Y. (2008). Genetic modification of neural stem cells. Molecular therapy : the journal of the American Society of Gene Therapy, 16(3), 450–457. doi:10.1038/sj.mt.6300402 Jurisch-Yaksi, N., Yaksi, E., & Kizil, C. (2020). Radial glia in the zebrafish brain: Functional, structural, and physiological comparison with the mammalian glia. Glia, 68(12), 2451–2470. doi:10.1002/glia.23849 Kadkol, S. S., Brody, J. R., Pevsner, J., Bai, J., & Pasternack, G. R. (1999). Correction to 'Modulation of oncogenic potential by alternative gene use in human prostate cancer'. Nature medicine, 5(9), 1087. doi:10.1038/12530 Kadota, S., & Nagata, K. (2011). pp32, an INHAT component, is a transcription machinery recruiter for maximal induction of IFN-stimulated genes. Journal of cell science, 124(Pt 6), 892–899. doi:10.1242/jcs.078253 Khan, M. Z., Vaidya, A., & Meucci, O. (2011). CXCL12-mediated regulation of ANP32A/Lanp, a component of the inhibitor of histone acetyl transferase (INHAT) complex, in cortical neurons. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology, 6(1), 163–170. doi:10.1007/s11481-010-9228-5 Kim, H., Shin, J., Kim, S., Poling, J., Park, H. C., & Appel, B. (2008). Notch-regulated oligodendrocyte specification from radial glia in the spinal cord of zebrafish embryos. Developmental dynamics : an official publication of the American Association of Anatomists, 237(8), 2081–2089. doi:10.1002/dvdy.21620 Kizil, C., Kaslin, J., Kroehne, V., & Brand, M. (2012). Adult neurogenesis and brain regeneration in zebrafish. Developmental neurobiology, 72(3), 429–461. doi:10.1002/dneu.20918 Kriegstein, A., & Alvarez-Buylla, A. (2009). The glial nature of embryonic and adult neural stem cells. Annual review of neuroscience, 32, 149–184. doi:10.1146/annurev.neuro.051508.135600 Kular, R. K., Cvetanovic, M., Siferd, S., Kini, A. R., & Opal, P. (2009). Neuronal differentiation is regulated by leucine-rich acidic nuclear protein (LANP), a member of the inhibitor of histone acetyltransferase complex. The Journal of biological chemistry, 284(12), 7783–7792. doi:10.1074/jbc.M806150200 Molyneaux, B. J., Arlotta, P., Menezes, J. R., & Macklis, J. D. (2007). Neuronal subtype specification in the cerebral cortex. Nature reviews. Neuroscience, 8(6), 427–437. doi:10.1038/nrn2151 Müller-Jensen, L., Ploner, C. J., Kroneberg, D., & Schmidt, W. U. (2021). Clinical Presentation and Causes of Non-traumatic Spinal Cord Injury: An Observational Study in Emergency Patients. Frontiers in neurology, 12, 701927. doi:10.3389/fneur.2021.701927 Munemasa, Y., Suzuki, T., Aizawa, K., Miyamoto, S., Imai, Y., Matsumura, T., Horikoshi, M., & Nagai, R. (2008). Promoter region-specific histone incorporation by the novel histone chaperone ANP32B and DNA-binding factor KLF5. Molecular and cellular biology, 28(3), 1171–1181. doi:10.1128/MCB.01396-07 New, P. W., & Marshall, R. (2014). International Spinal Cord Injury Data Sets for non-traumatic spinal cord injury. Spinal cord, 52(2), 123–132. doi:10.1038/sc.2012.160 Noonan, V. K., Dvorak, M. F. & Fehlings, M. G. In: Critical Care in Spinal Cord Injury (ed. Fehlings, M. G. ) 6–20 (Future Medicine Ltd, 2013) Ohnmacht, J., Yang, Y., Maurer, G. W., Barreiro-Iglesias, A., Tsarouchas, T. M., Wehner, D., Sieger, D., Becker, C. G., & Becker, T. (2016). Spinal motor neurons are regenerated after mechanical lesion and genetic ablation in larval zebrafish. Development (Cambridge, England), 143(9), 1464–1474. doi:10.1242/dev.129155 Opal, P., Garcia, J. J., Propst, F., Matilla, A., Orr, H. T., & Zoghbi, H. Y. (2003). Mapmodulin/leucine-rich acidic nuclear protein binds the light chain of microtubule-associated protein 1B and modulates neuritogenesis. The Journal of biological chemistry, 278(36), 34691–34699. doi:10.1074/jbc.M302785200 Reimer, M. M., Norris, A., Ohnmacht, J., Patani, R., Zhong, Z., Dias, T. B., Kuscha, V., Scott, A. L., Chen, Y. C., Rozov, S., Frazer, S. L., Wyatt, C., Higashijima, S., Patton, E. E., Panula, P., Chandran, S., Becker, T., & Becker, C. G. (2013). Dopamine from the brain promotes spinal motor neuron generation during development and adult regeneration. Developmental cell, 25(5), 478–491. doi:10.1016/j.devcel.2013.04.012 Reimer, M. M., Sörensen, I., Kuscha, V., Frank, R. E., Liu, C., Becker, C. G., & Becker, T. (2008). Motor neuron regeneration in adult zebrafish. The Journal of neuroscience : the official journal of the Society for Neuroscience, 28(34), 8510–8516. doi:10.1523/JNEUROSCI.1189-08.2008 Sánchez, I., Piñol, P., Corral-Juan, M., Pandolfo, M., & Matilla-Dueñas, A. (2013). A novel function of Ataxin-1 in the modulation of PP2A activity is dysregulated in the spinocerebellar ataxia type 1. Human molecular genetics, 22(17), 3425–3437. doi:10.1093/hmg/ddt197 Shen, S. M., Yu, Y., Wu, Y. L., Cheng, J. K., Wang, L. S., & Chen, G. Q. (2010). Downregulation of ANP32B, a novel substrate of caspase-3, enhances caspase-3 activation and apoptosis induction in myeloid leukemic cells. Carcinogenesis, 31(3), 419–426. doi:10.1093/carcin/bgp320 Stagaard, M., & Møllgård, K. (1989). The developing neuroepithelium in human embryonic and fetal brain studied with vimentin-immunocytochemistry. Anatomy and embryology, 180(1), 17–28. doi:10.1007/BF00321896 Stefanelli, G., Makowski, C. E., Brimble, M. A., Hall, M., Reda, A., Creighton, S. D., Leonetti, A. M., McLean, T., Zakaria, J. M., Baumbach, J., Greer, C. B., Davidoff, A. M., Walters, B. J., Murphy, P. J., & Zovkic, I. B. (2021). The histone chaperone Anp32e regulates memory formation, transcription, and dendritic morphology by regulating steady-state H2A.Z binding in neurons. Cell reports, 36(7), 109551. doi:10.1016/j.celrep.2021.109551 Sun, W., Hattori, N., Mutai, H., Toyoshima, Y., Kimura, H., Tanaka, S., & Shiota, K. (2001). PAL31, a nuclear protein required for progression to the S phase. Biochemical and biophysical research communications, 280(4), 1048–1054. doi:10.1006/bbrc.2000.4244 Thuret, S., Moon, L. D., & Gage, F. H. (2006). Therapeutic interventions after spinal cord injury. Nature reviews. Neuroscience, 7(8), 628–643. doi:10.1038/nrn1955 Tian, Z., Liu, Z., Fang, X., Cao, K., Zhang, B., Wu, R., Wen, X., Wen, Q., Shi, H., & Wang, R. (2021). ANP32A promotes the proliferation, migration and invasion of hepatocellular carcinoma by modulating the HMGA1/STAT3 pathway. Carcinogenesis, 42(3), 493–506. doi:10.1093/carcin/bgaa138 Trawczynski, M., Liu, G., David, B. T., & Fessler, R. G. (2019). Restoring Motor Neurons in Spinal Cord Injury With Induced Pluripotent Stem Cells. Frontiers in cellular neuroscience, 13, 369. doi:10.3389/fncel.2019.00369 Tsata, V., Kroehne, V., Wehner, D., Rost, F., Lange, C., Hoppe, C., Kurth, T., Reinhardt, S., Petzold, A., Dahl, A., Loeffler, M., Reimer, M. M., & Brand, M. (2020). Reactive oligodendrocyte progenitor cells (re-)myelinate the regenerating zebrafish spinal cord. Development (Cambridge, England), 147(24), dev193946. doi:10.1242/dev.193946 Wang, S., Wang, Y., Lu, Q., Liu, X., Wang, F., Ma, X., Cui, C., Shi, C., Li, J., & Zhang, D. (2015). The expression and distributions of ANP32A in the developing brain. BioMed research international, 2015, 207347. doi:10.1155/2015/207347 Williams, T. K., Costantino, C. L., Bildzukewicz, N. A., Richards, N. G., Rittenhouse, D. W., Einstein, L., Cozzitorto, J. A., Keen, J. C., Dasgupta, A., Gorospe, M., Gonye, G. E., Yeo, C. J., Witkiewicz, A. K., & Brody, J. R. (2010). pp32 (ANP32A) expression inhibits pancreatic cancer cell growth and induces gemcitabine resistance by disrupting HuR binding to mRNAs. PloS one, 5(11), e15455. doi:10.1371/journal.pone.0015455 Yuzefovych, Y., Blasczyk, R., & Huyton, T. (2015). Oncogenic acidic nuclear phosphoproteins ANP32C/D are novel clients of heat shock protein 90. Biochimica et biophysica acta, 1853(10 Pt A), 2338–2348. doi:10.1016/j.bbamcr.2015.06.007 Zeng, C. W., Kamei, Y., Shigenobu, S., Sheu, J. C., & Tsai, H. J. (2021). Injury-induced Cavl-expressing cells at lesion rostral side play major roles in spinal cord regeneration. Open biology, 11(2), 200304. doi:10.1098/rsob.200304 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85029 | - |
dc.description.abstract | 脊髓損傷( spinal cord injury,SCI )是指會對脊髓造成功能缺失的傷害,如感覺神經或運動神經功能的喪失。在哺乳動物受到SCI後,神經再生能力相當有限;但在低等脊椎動物如斑馬魚受到SCI後,神經功能則可恢復。Acidic nuclear phosphoprotein 32 family member A ( ANP32A )參與神經發育的功能,但作用卻不一致,例如在人類和小鼠大腦發育過程中促進神經元的分化;但在Alzheimer's disease中,ANP32A卻是損害microtubule network及neurite outgrowth。還有,ANP32A在SCI時對神經再生的影響也尚不清楚,所以,本研究想要探討斑馬魚胚胎受到SCI後,ANP32A是否參與脊髓神經的再生和及其角色。首先,我將anp32a mRNA顯微注射在運動神經會發螢光的Tg(mnx 1:GFP)斑馬魚轉殖品系胚胎後進行SCI,再觀測胚胎傷口處的神經再生和泳動能力的恢復,發現過量表現ANP32A具有幫助促進SCI後motor neurons的再生和泳動能力的恢復。相反地,若將anp32a knockdown 後進行SCI,則會顯著降低motor neuron的再生及泳動距離。進一步地,我用免疫螢光染色標記PH3 (proliferation marker)和fluorescence activated cell sorting,發現ANP32A會促進SCI後radial glial cells這類cell type的proliferation。最後,我將anp32a過量表現在radial glial cells會發螢光的Tg(gfap:GFP)斑馬魚轉殖品系後進行SCI,並進行標記PH3,觀察到radial glial cells和PH3-positive cells 有colocalization的現象,這結果支持ANP32A是增進radial glial cells的proliferation來幫助motor neurons的再生。綜合以上,本研究證實了ANP32A參與斑馬魚胚胎脊髓損傷後神經再生和功能恢復的過程乃是透過促進radial glial cells的proliferation來幫助motor neurons再生,因為radial glial cells這類neural precursors可以分化為neurons。 | zh_TW |
dc.description.abstract | Spinal cord injury (SCI) is injuries that causes functional loss of the spinal cord, such as loss of sensory or motor function. After SCI in mammals, the ability of neuronal regeneration is quite limited; but in lower vertebrates such as zebrafish, neuronal function can be recovered after SCI. Acidic nuclear phosphoprotein 32 family member A (ANP32A) is involved in neuroal development, but its function is not consistent. For example, ANP32A plays an important role in neuronal differentiation during mammalian brain development, while ANP32A impairs microtubule network and neurite outgrowth in Alzheimer's disease. Furthermore, the involvement of ANP32A in zebrafish SCI remains unknown. Therefore, this study aimed to investigate whether ANP32A is involved in the neuronal regeneration of injured zebrafish larvae. First, I microinjected anp32a mRNA into embryos of the transgenic zebrafish strain, Tg(mnx 1:GFP), which expresses the fluoresces in the motor neurons, followed by SCI, and then observed the regeneration of neurons around the SCI site and the recovery of swimming ability, and found that overexpression of anp32a enhanced the regeneration of motor neurons and swimming capability in the SCI-treated zebrafish larvae. Conversely, knockdown of anp32a followed by SCI significantly reduced regeneration of motor neurons and swimming distance. Furthermore, I used immunofluorescence staining to label PH3 (proliferation marker) and fluorescence activated cell sorting (FACS), found that ANP32A can promote the proliferation of cell types such as radial glial cells after SCI. Finally, I overexpressed anp32a in the transgenic zebrafish strain, Tg(gfap:GFP),which expresses the fluoresces in the radial glial cells, followed by SCI and labeled PH3, and observed colocalization between radial glial cells and PH3-positive cells , which supports that ANP32A promotes the proliferation of radial glial cells to help the regeneration of motor neurons. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:39:08Z (GMT). No. of bitstreams: 1 U0001-2309202215580900.pdf: 2586899 bytes, checksum: 8db099483b8dd7cbfa84e8274edec699 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 目 錄 誌謝………………………………………………………………………IV 中文摘要…………………………………………………………………VI 英文摘要………………………………………………………………VII 前言………………………………………………………………………1 材料與方法………………………………………………………………6 結果………………………………………………………………………11 討論………………………………………………………………………16 參考文獻…………………………………………………………………19 圖說………………………………………………………………………30 | |
dc.language.iso | zh-TW | |
dc.title | anp32a促進斑馬魚胚胎脊髓受損後神經的修復 | zh_TW |
dc.title | anp32a Enhances Neuronal Regeneration in the Spinal Cord Injury of Zebrafish Embryos | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林正勇(Cheng-Yung Lin),管永恕(Yung-Shu Kuan) | |
dc.subject.keyword | 斑馬魚,脊髓受損,酸性核磷蛋白 32 A,神經再生, | zh_TW |
dc.subject.keyword | zebrafish,spinal cord injury,ANP32A,neuronal regeneration, | en |
dc.relation.page | 49 | |
dc.identifier.doi | 10.6342/NTU202203927 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-09-28 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
dc.date.embargo-lift | 2022-09-30 | - |
顯示於系所單位: | 分子與細胞生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2309202215580900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.53 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。