Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85027
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許聿翔(Yu-Hsiang Hsu)
dc.contributor.authorTing-Wei Wangen
dc.contributor.author王廷瑋zh_TW
dc.date.accessioned2023-03-19T22:39:00Z-
dc.date.copyright2022-08-24
dc.date.issued2022
dc.date.submitted2022-08-18
dc.identifier.citationREFERENCE [1] 蘇芳儀、周碩彥. 'I的萬物論——迎接物聯網時代.' https://scitechvista.nat.gov.tw/Article/c000003/detail?ID=85db6c13-a839-4e6c-a565-cfd8626a38de. [2] 周立德、曾家偉. '物聯網與大數據.' http://www.myhome.net.tw/2017_04/p03.htm. [3] A.-K. Witte and R. Zarnekow, 'Transforming personal healthcare through technology-a systematic literature review of wearable sensors for medical application,' in Proceedings of the 52nd Hawaii International Conference on System Sciences, 2019. [4] G. Aroganam, N. Manivannan, and D. Harrison, 'Review on Wearable Technology Sensors Used in Consumer Sport Applications,' Sensors, vol. 19, no. 9, p. 1983, 2019. [Online]. Available: https://www.mdpi.com/1424-8220/19/9/1983. [5] IDC, 'Wearables Shipments Grew 9.9% in the Third Quarter of 2021 as Watches Start to Displace Wristbands in the Wrist-worn Device Category, Says IDC,' 2021/12. [Online]. Available: https://www.idc.com/getdoc.jsp?containerId=prUS48460121 [6] WiseOcean.Tech. '可穿戴裝置與醫療產業交集的商機起飛.' https://chinese.classroom-aid.com/2020/08/hiot-digital-health.html/. [7] G. MingCheng, FengZhang,Wen-laiTang,ShiJianping,Ji-quanYang,Li-yaZhu, 'A review of flexible force sensors for human health monitoring,' 2020, doi: https://doi.org/10.1016/j.jare.2020.07.001. [8] P.-C. Lai, Y.-H. Hsu*, T.-T. Lin, S.-W. Huang, and Y.-C. Lai, 'Development of an Elastic Piezoelectric Yarn for the Application of a Muscle Patch Sensor,' 2020, doi: https://doi.org/10.1021/acsomega.0c03309. [9] F. Xu, X. Li,Y. Shi,L. Li,W. Wang,L. He,R. Liu, 'Recent Developments for Flexible Pressure Sensors: A Review,' Micromachines, vol. 9, no. 11, p. 580, 2018. [Online]. Available: https://www.mdpi.com/2072-666X/9/11/580. [10] C.-T. Huang,C.-L. Shen,C.-F. Tang,S.-H. Chang, 'A wearable yarn-based piezo-resistive sensor,' 2008, doi: https://doi.org/10.1016/j.sna.2007.10.069. [11] S. Gong,W. Schwalb,Y-W. Wang,Y. Chen,Y. Tang,J. Si,B. Shirinzadeh,W. Cheng, 'A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,' Nature Communications, vol. 5, no. 1, p. 3132, 2014/02/04 2014, doi: 10.1038/ncomms4132. [12] A. Kiaghadi, M. Baima, J. Gummeson, T. Andrew, and D. Ganesan, 'Fabric as a Sensor: Towards Unobtrusive Sensing of Human Behavior with Triboelectric Textiles,' presented at the Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems, Shenzhen, China, 2018. [Online]. Available: https://doi.org/10.1145/3274783.3274845. [13] M. Baniasadi,J. Huang,Z. Xu,S. Moreno,X. Yang,J. Chang,M. -A. -Q. Lopez,M. Naraghi,M. -M.Jolandan, 'High-Performance Coils and Yarns of Polymeric Piezoelectric Nanofibers,' ACS Applied Materials & Interfaces, vol. 7, no. 9, pp. 5358-5366, 2015/03/11 2015, doi: 10.1021/am508812a. [14] Y. Zang, F. Zhang, C.-a. Di, and D. Zhu, 'Advances of flexible pressure sensors toward artificial intelligence and health care applications,' Materials Horizons, vol. 2, no. 2, pp. 140-156, 2015. [15] J. Hwang, Y. Kim, H. Yang, and J. H. Oh, 'Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor,' Composites Part B: Engineering, vol. 211, p. 108607, 2021. [16] S. Park H. Kim,M. Vosgueritchian,S. Cheon,H. Kim,J. -H. Koo,T. -R. Kim,S. Lee,G. Schwartz,H. Chang,Zhenan. Bao, 'Stretchable energy‐harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes,' Advanced Materials, vol. 26, no. 43, pp. 7324-7332, 2014. [17] X. Wang, F. Sun, G. Yin, Y. Wang, B. Liu, and M. Dong, 'Tactile-sensing based on flexible PVDF nanofibers via electrospinning: A review,' Sensors, vol. 18, no. 2, p. 330, 2018. [18] S. L. P. Tang, 'Wearable sensors for sports performance,' in Textiles for Sportswear: Elsevier, 2015, pp. 169-196. [19] W. Tao, T. Liu, R. Zheng, and H. Feng, 'Gait analysis using wearable sensors,' Sensors, vol. 12, no. 2, pp. 2255-2283, 2012. [20] S. H. Jaffer and N. H. Ghaeb, 'Important features of EMG signal under simple load conditions,' Journal of Polytechnic, vol. 7, pp. 1-01, 2017. [21] 劉柏辰, '可應用於人體肌肉量測的可撓式壓電感測貼布之開發,' 碩士論文, 應用力學研究所, 國立臺灣大學, 2018. [22] M. Noreen Iftikhar. 'Flexing Slow-Twitch Muscle Fibers.' https://www.healthline.com/health/slow-twitch-muscle-fibers. [23] N. Nazmi, M. A. Abdul Rahman, S.-I. Yamamoto, S. A. Ahmad, H. Zamzuri, and S. A. Mazlan, 'A review of classification techniques of EMG signals during isotonic and isometric contractions,' Sensors, vol. 16, no. 8, p. 1304, 2016. [24] R. Drake, A. W. Vogl, and A. W. Mitchell, Gray's Anatomy for Students Flash Cards E-Book. Elsevier Health Sciences, 2019. [25] M. -A. Norizan,F. -M. -A. Teng,F. Ali,N. Abas,H. Jamaluddin,M. -F. Johari, 'RH-2000 robotic hand control based on linear enveloped electromyography signal from forearm muscle,' Journal of Engineering and Applied Sciences, vol. 11, pp. 3336-3340, 03/01 2016. [26] B. K. Barry and R. M. Enoka, 'The neurobiology of muscle fatigue: 15 years later,' Integrative and Comparative Biology, vol. 47, no. 4, pp. 465-473, 2007, doi: 10.1093/icb/icm047. [27] X. Song, H. Li, and W. Gao, 'MyoMonitor: Evaluating muscle fatigue with commodity smartphones,' Smart Health, vol. 19, p. 100175, 2021. [28] V. Chan and A. Perlas, 'Basics of ultrasound imaging,' in Atlas of ultrasound-guided procedures in interventional pain management: Springer, 2011, pp. 13-19. [29] J. E. Aldrich, 'Basic physics of ultrasound imaging,' Critical care medicine, vol. 35, no. 5, pp. S131-S137, 2007. [30] 林哲宇、賈澤民、胡李琳、江俊諺、古嘉豪、陳耀麟、邵耀華, '超音波影像原理簡介,' 物理治療, vol. 35, no. 3, pp. 180-187, 2010. [31] SImpliFASTER. 'A Buyer’s Guide to 3-D Motion Capture Systems for Sport.' https://simplifaster.com/articles/3d-motion-capture-sport/. [32] 翔麟資電有限公司. '數位影像處理簡介.' http://www.shinning-tech.com/?p=50. [33] N. E. Huang,Z. Shen,S. -R. Long,M. -C. Wu,H. -H. Shin,Q. Zheng,N. -C. Yen,C. -C. Tung,H. -H. Liu, 'The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,' Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, vol. 454, no. 1971, pp. 903-995, 1998. [34] 陳振雄, '應用希爾伯特-黃轉換之訊號濾波研究,' Journal of Science and Engineering Technology, vol. 6, no. 1, pp. 75-84, 2010. [35] A. Ballato, 'Piezoelectricity: history and new thrusts,' in 1996 IEEE Ultrasonics Symposium. Proceedings, 1996, vol. 1: IEEE, pp. 575-583. [36] A. Manbachi and R. S. Cobbold, 'Development and application of piezoelectric materials for ultrasound generation and detection,' Ultrasound, vol. 19, no. 4, pp. 187-196, 2011. [37] C. W. Guyton, 'Method of maintaining electric currents of constant frequency,' ed: Google Patents, 1923. [38] A. Von Hippel, 'Ferroelectricity, domain structure, and phase transitions of barium titanate,' Reviews of Modern Physics, vol. 22, no. 3, p. 221, 1950. [39] G. Shirane, E. Sawaguchi, and Y. Takagi, 'Dielectric properties of lead zirconate,' Physical Review, vol. 84, no. 3, p. 476, 1951. [40] S. Tadigadapa and K. Mateti, 'Piezoelectric MEMS sensors: state-of-the-art and perspectives,' Measurement Science and technology, vol. 20, no. 9, p. 092001, 2009. [41] R. C. Smith, Smart material systems: model development. SIAM, 2005. [42] K. S. Ramadan, D. Sameoto, and S. Evoy, 'A review of piezoelectric polymers as functional materials for electromechanical transducers,' Smart Materials and Structures, vol. 23, no. 3, p. 033001, 2014. [43] T. Furukawa, 'Piezoelectricity and pyroelectricity in polymers,' IEEE transactions on electrical insulation, vol. 24, no. 3, pp. 375-394, 1989. [44] H. Jaffe, 'Piezoelectric ceramics,' Journal of the American Ceramic Society, vol. 41, no. 11, pp. 494-498, 1958. [45] S. B. Lang, 'Pyroelectricity: from ancient curiosity to modern imaging tool,' Physics today, vol. 58, no. 8, p. 31, 2005. [46] W. Känzig, 'Ferroelectrics and antiferroeletrics,' in Solid state physics, vol. 4: Elsevier, 1957, pp. 1-197. [47] M. Stewart, M. G. Cain, and D. Hall, Ferroelectric hysteresis measurement and analysis. National Physical Laboratory Teddington, 1999. [48] H. T. A. Meitzler, A. Warner, D. Berlincourt, G. Couqin, and F. Welsh III, 'IEEE standard on piezoelectricity,,' 1988. [49] H. Kawai, 'The piezoelectricity of poly (vinylidene fluoride),' Japanese journal of applied physics, vol. 8, no. 7, p. 975, 1969. [50] Q. Zhang, V. Bharti, and X. Zhao, 'Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly (vinylidene fluoride-trifluoroethylene) copolymer,' Science, vol. 280, no. 5372, pp. 2101-2104, 1998. [51] Y. Maeda, H. Kanetsuna, K. Nagata, K. Matsushige, and T. Takemura, 'Direct observation of phase transitions of polyethylene under high pressure by a PSPC x‐ray system,' Journal of Polymer Science: Polymer Physics Edition, vol. 19, no. 9, pp. 1313-1324, 1981. [52] G. Davis, J. McKinney, M. Broadhurst, and S. Roth, 'Electric‐field‐induced phase changes in poly (vinylidene fluoride),' Journal of Applied Physics, vol. 49, no. 10, pp. 4998-5002, 1978. [53] Z. Cui, N. T. Hassankiadeh, Y. Zhuang, E. Drioli, and Y. M. Lee, 'Crystalline polymorphism in poly (vinylidenefluoride) membranes,' Progress in Polymer Science, vol. 51, pp. 94-126, 2015. [54] Y. Higashihata, J. Sako, and T. Yagi, 'Piezoelectricity of vinylidene fluoride-trifluoroethylene copolymers,' Ferroelectrics, vol. 32, no. 1, pp. 85-92, 1981. [55] H. Ohigashi and K. Koga, 'Ferroelectric copolymers of vinylidenefluoride and trifluoroethylene with a large electromechanical coupling factor,' Japanese journal of applied physics, vol. 21, no. 8A, p. L455, 1982. [56] J. Nunes-Pereira,S. Ribeiro,C. -J. Gombek,F. -M. Gomes,D. -A. Patterson,S. Lanceros-Mendez, 'Poly (vinylidene fluoride) and copolymers as porous membranes for tissue engineering applications,' Polymer Testing, vol. 44, pp. 234-241, 2015. [57] L. Rayleigh, 'XX. On the equilibrium of liquid conducting masses charged with electricity,' The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 14, no. 87, pp. 184-186, 1882. [58] J. Zeleny, 'The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces,' Physical Review, vol. 3, no. 2, p. 69, 1914. [59] C.-H. Hsu, J. Cohen, and R. Tietz, 'Polyaniline spinning solutions and fibers,' Synthetic metals, vol. 59, no. 1, pp. 37-41, 1993. [60] B. Vonnegut and R. L. Neubauer, 'Production of monodisperse liquid particles by electrical atomization,' Journal of colloid science, vol. 7, no. 6, pp. 616-622, 1952. [61] G. I. Taylor, 'Disintegration of water drops in an electric field,' Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 280, no. 1382, pp. 383-397, 1964. [62] D. Li and Y. Xia, 'Electrospinning of nanofibers: reinventing the wheel?,' Advanced materials, vol. 16, no. 14, pp. 1151-1170, 2004. [63] A. Haider, S. Haider, and I.-K. Kang, 'A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology,' Arabian Journal of Chemistry, vol. 11, no. 8, pp. 1165-1188, 2018. [64] M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, 'Electrospinning and electrically forced jets. I. Stability theory,' Physics of fluids, vol. 13, no. 8, pp. 2201-2220, 2001. [65] D. H. Reneker and A. L. Yarin, 'Electrospinning jets and polymer nanofibers,' Polymer, vol. 49, no. 10, pp. 2387-2425, 2008. [66] Y. Shin, M. Hohman, M. Brenner, and G. Rutledge, 'Experimental characterization of electrospinning: the electrically forced jet and instabilities,' Polymer, vol. 42, no. 25, pp. 09955-09967, 2001. [67] S. Park, K. Park, H. Yoon, J. Son, T. Min, and G. Kim, 'Apparatus for preparing electrospun nanofibers: designing an electrospinning process for nanofiber fabrication,' Polymer International, vol. 56, no. 11, pp. 1361-1366, 2007. [68] B. Ding, E. Kimura, T. Sato, S. Fujita, and S. Shiratori, 'Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning,' Polymer, vol. 45, no. 6, pp. 1895-1902, 2004. [69] N. Sasithorn, L. Martinová, J. Horáková, and R. Mongkholrattanasit, 'Fabrication of silk fibroin nanofibres by needleless electrospinning,' Electrospinning-Material, Techniques, and Biomedical Applications; Intech: London, UK, pp. 95-113, 2016. [70] D. Li and Y. Xia, 'Direct fabrication of composite and ceramic hollow nanofibers by electrospinning,' Nano letters, vol. 4, no. 5, pp. 933-938, 2004. [71] P. Gupta and G. L. Wilkes, 'Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach,' Polymer, vol. 44, no. 20, pp. 6353-6359, 2003. [72] X. Lu, C. Wang, and Y. Wei, 'One‐dimensional composite nanomaterials: Synthesis by electrospinning and their applications,' Small, vol. 5, no. 21, pp. 2349-2370, 2009. [73] J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, and N. B. Tan, 'Controlled deposition of electrospun poly (ethylene oxide) fibers,' Polymer, vol. 42, no. 19, pp. 8163-8170, 2001. [74] J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, 'Electrospinning of collagen nanofibers,' Biomacromolecules, vol. 3, no. 2, pp. 232-238, 2002. [75] C. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, 'Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering,' Biomaterials, vol. 25, no. 5, pp. 877-886, 2004. [76] Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, 'A review on polymer nanofibers by electrospinning and their applications in nanocomposites,' Composites science and technology, vol. 63, no. 15, pp. 2223-2253, 2003. [77] 朱信融, '以靜電紡絲研製高排列性聚 (偏氟乙烯-三氟乙烯) 薄膜及相關複合膜應用之研究,' 碩士論文, 應用力學研究所, 國立臺灣大學, 2016. [78] T. Ohmi, S. Sudoh, and H. Mishima, 'Static charge removal with IPA solution,' IEEE Transactions on semiconductor manufacturing, vol. 7, no. 4, pp. 440-446, 1994. [79] 賴怡靜, '以壓電肌肉感應貼布監測肌肉疲勞行為之分析方法開發與驗證,' 碩士論文, 工程科學及海洋工程學系, 國立臺灣大學, 2021.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85027-
dc.description.abstract本論文旨在驗證壓電肌肉感應貼布之量測機制的可靠度,其量測方式為藉由貼附於人體表面,量測肌肉收縮所引起之皮膚形變,是一種非侵入式的量測方式。為驗證壓電肌肉感應貼布量測到的數據可代表肌肉作動行為,本研究利用超音波影像以及運動追蹤系統設計三種實驗來驗證肌肉感應貼布量測機制的可靠度。第一項實驗進行一種由前臂肌肉-屈指淺肌所主導之握力動作,利用壓電肌肉感應貼布與超音波影像同時量測屈指淺肌的施力收縮情形,比較壓電肌肉感應貼布所量測到人體皮膚表面因肌肉收縮所造成的機械形變與超音波影像所觀測到的肌肉收縮行為,透過本研究所開發之影像分析演算法,探討其間之相關性,實驗結果證明在時域上,其相關係數r於20位受試者上有16位達0.7以上,且頻率域上的兩個峰值相關係數為0.9998及0.9930。另外兩項為觀測肱二頭肌所主導之動作,利用動作捕捉系統與壓電肌肉感應貼布同時量測,以進行比較及驗證。本研究先探討等長收縮之靜態疲勞實驗,驗證壓電肌肉感應貼布具有監測肌肉疲勞時所產生之震顫行為,透過紅外線攝像機以100Hz取樣頻率來捕捉貼附於肱二頭肌之三顆反射標記的三維坐標,計算肌肉收縮的相對位置與時間的關係曲線,與壓電肌肉感應貼布訊號進行分析比較。本研究並探討肱二頭肌動態等張收縮實驗,同樣利用紅外線攝像機動作捕捉技術,驗證皮膚表面受到肌肉收縮所導致之形變與壓電肌肉感應貼布訊號之間的關係曲線。實驗結果顯示兩種量測方式的中位頻率相關係數r為0.7226。第三項實驗結果的相關係數r為1。以上三組實驗結果證明壓電肌肉感應貼布具有極高之監測肌肉作動行為之可靠度,可作為個人體能提升及運動員技巧提升之個人化穿戴裝置。zh_TW
dc.description.abstractThis paper aims to verify the reliability of using the piezoelectric muscle patch sensor(MPS) to monitor muscle activities. It is a non-invasive sensor that attaches to the skin of a muscle to measure the skin deformation induced by muscle contraction. To verify measuring mechanism of the MPS, ultrasound imaging and motion tracking system are used, and three experiments are conducted. The first experiment compares the grip force of a forearm muscle-flexor superficial muscles (FDS), both MPS and ultrasound imaging are used at the same time. An imaging analysis algorithm is developed to explore the correlation between muscle contraction and MPS signals. Experimental results show that time-domain correlation r is larger than 0.7 for 16 out of 20 subjects, and the two primary peaks in the frequency domain correlation were 0.9996 and 0.9959. The other two experiments use a motion tracker system to verify MPS signals. In the fatigue experiment of the isometric contraction, it was verified that the MPS can monitor the tremor behavior generated by muscle fatigue. Experimental results demonstrate that the median frequency of the two data is correlated in the frequency domain. The correlation coefficient r is 0.7226. For the dynamic isotonic contraction of the biceps, the correlation coefficient r is 1 in the frequency domain. Based on experimental studies, it is verified that the MPS has a high reliability. It can be a reliable personalized wearable device for athlete personalized training.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:39:00Z (GMT). No. of bitstreams: 1
U0001-1608202218594000.pdf: 15538840 bytes, checksum: 8aa5c4152fd0b3a744cdb6af502b14b9 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 i 誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 ix 表目錄 xvii Chapter 1 緒論 1 1.1 研究背景 1 1.1.1 物理性感測器介紹與應用 3 1.1.2 運動感測器應用 6 1.2 研究目標 8 1.3 研究方法 9 1.3.1 超音波實驗-動態收縮 9 1.3.2 動作捕捉實驗-靜態疲勞 10 1.3.3 動作捕捉實驗-動態收縮 12 1.4 論文架構 13 Chapter 2 肌肉、超音波與運動追蹤介紹 15 2.1 肌肉作動原理 15 2.1.1 肌肉分類 15 2.1.2 前臂肌肉介紹 16 2.1.3 肌肉疲勞 18 2.2 超音波簡介 20 2.2.1 超音波影像介紹 20 2.2.2 超音波探頭及分類 21 2.2.3 超音波成像模式 22 2.3 運動追蹤 24 2.4 數位影像處理與訊號濾波方式 25 2.4.1 數位影像處理簡介 25 2.4.2 希爾伯特-黃轉換 26 Chapter 3 影像分析算法開發及壓電材料 30 3.1 影像分析算法 30 3.1.1 影像濾波及抓取特徵 30 3.1.2 計算肌肉直徑變化 32 3.2 壓電材料 34 3.2.1 研究背景 34 3.2.2 壓電材料種類 35 3.2.3 壓電、焦電、鐵電效應 37 3.2.4 壓電本構方程式 40 3.3 高分子壓電材料 43 3.3.1 PVDF 43 3.3.2 P(VDF-TrFE) 45 3.4 靜電紡絲 46 3.4.1 研究背景 46 3.4.2 原理與技術 47 3.4.3 靜電紡絲技術 50 3.4.4 靜電紡絲架設與環境參數 53 Chapter 4 研究方法與實驗設計 55 4.1 MPS訊號與超音波訊號驗證架構 55 4.2 超音波實驗訊號量測與架設 55 4.2.1 參與受試者之條件 55 4.2.2 超音波實驗之前置作業 55 4.2.3 超音波實驗之數據收集 56 4.2.4 超音波訊號方法之驗證 58 4.3 動作捕捉實驗量測與架設 58 4.3.1 參與受試者之條件 58 4.3.2 動作捕捉實驗之前置作業 59 4.3.3 動作捕捉實驗之數據收集 62 Chapter 5 靜電紡絲與肌肉感應貼布製程 64 5.1 靜電紡絲製程 64 5.1.1 溶液配置 64 5.1.2 靜電紡絲架設 64 5.1.3 製程操作變數 66 5.1.4 靜電紡絲後處理 67 5.2 肌肉感應貼布製程 67 5.2.1 絲線纖維線性化 67 5.2.2 肌肉感應貼布製程 69 5.2.3 感測器理論推導 71 Chapter 6 實驗結果與討論 75 6.1 動態實驗結果 75 6.1.1 以超音波影像驗證震盪器模擬肌肉收縮實驗結果 75 6.1.1 以超音波影像驗證FDS動態收縮結果 77 6.1.2 以動作捕捉系統驗證二頭肌動態收縮結果 83 6.2 靜態實驗結果 87 6.2.1 以動作捕捉系統驗證二頭肌疲勞顫震結果 87 Chapter 7 結論與未來展望 98 7.1 結論 98 7.2 未來展望 99 REFERENCE 100 附錄 106
dc.language.isozh-TW
dc.title以超音波影像及動作捕捉攝影系統驗證壓電肌肉感應貼布之可靠度zh_TW
dc.titleStudy on the reliability of the piezoelectric muscle patch sensor using ultrasound imaging and motion capture systemen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李世光(Chih-Kung Lee),湯文慈(Wen-Tzu Tang),林哲宇(Che-Yu Lin)
dc.subject.keyword壓電感測器,聚(偏氯乙烯-三氟乙烯),靜電紡絲,可撓式感測器,肌肉疲勞,超音波影像,動作捕捉系統,肌肉應變量測,zh_TW
dc.subject.keywordPiezoelectric materials,poly(vinylidene chloride-trifluoroethylene),electrospinning,flexible sensors,muscle fatigue,ultrasound imaging,motion tracking,muscle strain measurement,en
dc.relation.page123
dc.identifier.doi10.6342/NTU202202469
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
dc.date.embargo-lift2024-08-23-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
U0001-1608202218594000.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
15.17 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved