Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85023
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭鴻基(Hung-Chi Kuo)
dc.contributor.authorChun-Min Hsiaoen
dc.contributor.author蕭純珉zh_TW
dc.date.accessioned2023-03-19T22:38:45Z-
dc.date.copyright2022-08-24
dc.date.issued2022
dc.date.submitted2022-08-17
dc.identifier.citationAlemany, S., J. Beltran, A. Perez, and S. Ganzfried, 2019: Predicting hurricane trajectories using a recurrent neural network. Proceedings of the AAAI Conference on Artificial Intelligence, 468-475. Baek, Y.-H., I.-J. Moon, J. Im, and J. Lee, 2022: A Novel Tropical Cyclone Size Estimation Model Based on a Convolutional Neural Network Using Geostationary Satellite Imagery. Remote Sensing, 14, 426. Bai, C.-Y., B.-F. Chen, and H.-T. Lin, 2019: Attention-based Deep Tropical Cyclone Rapid Intensification Prediction. MACLEAN@ PKDD/ECML. Chan, K. T., and J. C. Chan, 2012: Size and strength of tropical cyclones as inferred from QuikSCAT data. Monthly weather review, 140, 811-824. Chen, B.-F., B. Chen, H.-T. Lin, and R. L. Elsberry, 2019: Estimating tropical cyclone intensity by satellite imagery utilizing convolutional neural networks. Weather and Forecasting, 34, 447-465. Chen, B., B.-F. Chen, and H.-T. Lin, 2018: Rotation-blended CNNs on a new open dataset for tropical cyclone image-to-intensity regression. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 90-99. Chen, B., B.-F. Chen, and C.-M. Hsiao, 2020: CNN Profiler on Polar Coordinate Images for Tropical Cyclone Structure Analysis. arXiv preprint arXiv:2010.15158. Chou, K.-H., C. Wu, P. Lin, S. Aberson, M. Peng, and T. Nakazawa, 2006: The impact of dropsonde data from DOTSTAR on tropical cyclone track forecasting. Preprints, 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., XXBX.[Available online at http://ams. confex. com/ams/27Hurricanes/techprogram/paper_XX XXXX. htm.]. Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Monthly Weather Review, 103, 420-430. ——, 1984: Tropical cyclone intensity analysis using satellite data. Vol. 11, US Department of Commerce, National Oceanic and Atmospheric Administration …. Elsner, J. B., J. P. Kossin, and T. H. Jagger, 2008: The increasing intensity of the strongest tropical cyclones. Nature, 455, 92-95. Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686-688. Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483-485. Fiorino, M., and R. L. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. Journal of Atmospheric Sciences, 46, 975-990. Giffard-Roisin, S., M. Yang, G. Charpiat, C. Kumler Bonfanti, B. Kégl, and C. Monteleoni, 2020: Tropical cyclone track forecasting using fused deep learning from aligned reanalysis data. Frontiers in big Data, 1. Holland, G. J., and R. T. Merrill, 1984: On the dynamics of tropical cyclone structural changes. Quarterly Journal of the Royal Meteorological Society, 110, 723-745. Kendall, M. G., 1948: Rank correlation methods. Klotz, B., and H. Jiang, 2017: Examination of Surface Wind Asymmetries in Tropical Cyclones. Part I: General Structure and Wind Shear Impacts. Klotz, B. W., and H. Jiang, 2016: Global composites of surface wind speeds in tropical cyclones based on a 12 year scatterometer database. Geophysical Research Letters, 43, 10,480-410,488. Klotzbach, P. J., 2006: Trends in global tropical cyclone activity over the past twenty years (1986–2005). Geophysical research letters, 33. Klotzbach, P. J., and C. W. Landsea, 2015: Extremely intense hurricanes: Revisiting Webster et al.(2005) after 10 years. Journal of Climate, 28, 7621-7629. Knaff, J. A., S. P. Longmore, and D. A. Molenar, 2014: An objective satellite-based tropical cyclone size climatology. Journal of Climate, 27, 455-476. Knaff, J. A., M. DeMaria, D. A. Molenar, C. R. Sampson, and M. G. Seybold, 2011: An automated, objective, multiple-satellite-platform tropical cyclone surface wind analysis. Journal of applied meteorology and climatology, 50, 2149-2166. Knaff, J. A., C. J. Slocum, K. D. Musgrave, C. R. Sampson, and B. R. Strahl, 2016: Using routinely available information to estimate tropical cyclone wind structure. Monthly Weather Review, 144, 1233-1247. Koenker, R., and G. Bassett Jr, 1978: Regression quantiles. Econometrica: journal of the Econometric Society, 33-50. Mamalakis, A., I. Ebert-Uphoff, and E. A. Barnes, 2022: Explainable artificial intelligence in meteorology and climate science: Model fine-tuning, calibrating trust and learning new science. International Workshop on Extending Explainable AI Beyond Deep Models and Classifiers, Springer, 315-339. Mann, H. B., 1945: Nonparametric tests against trend. Econometrica: Journal of the econometric society, 245-259. Meng, F., P. Xie, Y. Li, H. Sun, D. Xu, and T. Song, 2021: Tropical Cyclone Size Estimation Using deep Convolutional Neural Network. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, IEEE, 8472-8475. Moradi Kordmahalleh, M., M. Gorji Sefidmazgi, and A. Homaifar, 2016: A sparse recurrent neural network for trajectory prediction of atlantic hurricanes. Proceedings of the Genetic and Evolutionary Computation Conference 2016, 957-964. Mouche, A., B. Chapron, J. Knaff, Y. Zhao, B. Zhang, and C. Combot, 2019: Copolarized and Cross‐Polarized SAR Measurements for High‐Resolution Description of Major Hurricane Wind Structures: Application to Irma Category 5 Hurricane. Journal of Geophysical Research: Oceans, 124, 3905-3922. Mueller, K. J., M. DeMaria, J. Knaff, J. P. Kossin, and T. H. Vonder Haar, 2006: Objective estimation of tropical cyclone wind structure from infrared satellite data. Weather and forecasting, 21, 990-1005. Olander, T., A. Wimmers, C. Velden, and J. P. Kossin, 2021: Investigation of Machine Learning Using Satellite-Based Advanced Dvorak Technique Analysis Parameters to Estimate Tropical Cyclone Intensity. Weather and Forecasting, 36, 2161-2186. Piñeros, M. F., E. A. Ritchie, and J. S. Tyo, 2008: Objective measures of tropical cyclone structure and intensity change from remotely sensed infrared image data. IEEE Transactions on Geoscience and Remote sensing, 46, 3574-3580. Ritchie, E. A., K. M. Wood, O. G. Rodríguez-Herrera, M. F. Piñeros, and J. S. Tyo, 2014: Satellite-derived tropical cyclone intensity in the North Pacific Ocean using the deviation-angle variance technique. Weather and forecasting, 29, 505-516. Sampson, C. R., E. M. Fukada, J. A. Knaff, B. R. Strahl, M. J. Brennan, and T. Marchok, 2017: Tropical cyclone gale wind radii estimates for the western North Pacific. Weather and Forecasting, 32, 1029-1040. Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall's tau. Journal of the American statistical association, 63, 1379-1389. Shi, Y., W.-Q. Zhang, J. Liu, and M. T. Johnson, 2013: RNN language model with word clustering and class-based output layer. EURASIP Journal on Audio, Speech, and Music Processing, 2013, 1-7. Uhlhorn, E. W., B. W. Klotz, T. Vukicevic, P. D. Reasor, and R. F. Rogers, 2014: Observed hurricane wind speed asymmetries and relationships to motion and environmental shear. Monthly Weather Review, 142, 1290-1311. Velden, C. S., and D. Herndon, 2020: A consensus approach for estimating tropical cyclone intensity from meteorological satellites: SATCON. Weather and Forecasting, 35, 1645-1662. Wang, C., G. Zheng, X. Li, Q. Xu, B. Liu, and J. Zhang, 2021: Tropical cyclone intensity estimation from geostationary satellite imagery using deep convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-16. Wang, X., W. Wang, and B. Yan, 2020: Tropical cyclone intensity change prediction based on surrounding environmental conditions with deep learning. Water, 12, 2685. Weatherford, C. L., and W. M. Gray, 1988: Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability. Monthly Weather Review, 116, 1044-1056. Webster, P. J., G. J. Holland, J. A. Curry, and H.-R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844-1846. Wimmers, A., C. Velden, and J. H. Cossuth, 2019: Using deep learning to estimate tropical cyclone intensity from satellite passive microwave imagery. Monthly Weather Review, 147, 2261-2282. Wu, C.-C., and Coauthors, 2005: Dropwindsonde observations for typhoon surveillance near the Taiwan Region (DOTSTAR). Bulletin of the American Meteorological Society, 86, 787-790. Xu, W., K. Balaguru, A. August, N. Lalo, N. Hodas, M. DeMaria, and D. Judi, 2021: Deep Learning Experiments for Tropical Cyclone Intensity Forecasts. Weather and Forecasting, 36, 1453-1470. Zhang, C.-J., J.-F. Qian, L.-M. Ma, and X.-Q. Lu, 2016: Tropical cyclone intensity estimation using RVM and DADI based on infrared brightness temperature. Weather and Forecasting, 31, 1643-1654. Zhang, C.-J., X.-J. Wang, L.-M. Ma, and X.-Q. Lu, 2021: Tropical cyclone intensity classification and estimation using infrared satellite images with deep learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 2070-2086.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85023-
dc.description.abstract熱帶氣旋結構的估計與分析為重要的研究與防災議題。然而因觀測的限制,熱帶氣旋最佳路徑資料於2004年後才提供較完整之結構參數估計。本研究使用卷積神經網路(CNN)建立一深度學習模式,利用紅外線衛星雲圖估計熱帶氣旋軸對稱風速剖面,為一套客觀、具全球一致性之熱帶氣旋結構分析方法,以期協助解決目前熱帶氣旋結構觀測資料時空解析度不足的問題。 CNN為一種監督式學習演算法,需足夠且可信的標籤資料方可計算損失函數並優化權重,故本研究結合ERA5再分析資料、最佳路徑資料之各項結構參數、及一個參數化風速模型,建立熱帶氣旋軸對稱風速結構標籤資料(2004– 2018)。利用這組標籤資料,我們以2004–2016年的資料訓練CNN模式,並以2017–2018年的資料進行測試;結果顯示模式所估計之熱帶氣旋強度之均方根誤差與暴風半徑之平均絕對誤差,分別為9.9 kt及43.6 km,具作業實用性。利用ASCAT及SAR海表風觀測對2017–2018熱帶氣旋進行獨立校驗亦顯示,深度學習模式能合理估計熱帶氣旋結構,且可能較標籤資料更接近觀測的風速值。訓練結果也顯示,模式對強度較弱的熱帶氣旋的估計誤差較大,可能是由於衛星圖像中,系統結構較鬆散所致。此外,對於登陸的熱帶氣旋,模式估計之誤差更大;而風速結構之估計誤差,與資料的空間分佈亦有關。 利用本研究的客觀方法,通過衛星雲圖重建1981年至2020年之熱帶氣旋結構再分析資料,並利用此資料分析熱帶氣旋強度和壯度的長時間趨勢,結果顯示,大西洋在2005年後之PDI(Power Dissipation Index)、角動量累積值(AM_accum)與海表面溫度之相關性並不明顯;即隨海溫之逐年提升,PDI和AM_accum卻無顯著增加趨勢。最後,本研究嘗試將模式輸出的一維軸對稱風速剖面資訊,反演成二維風場資料,並與實際觀測比對;結果顯示,此方法已可大致掌握熱帶氣旋之不對稱風速結構。zh_TW
dc.description.abstractEstimating and analyzing tropical cyclone (TC) structure are very important for TC research and disaster prevention. However, due to observational limitations, the best track data provide more complete TC structure parameter estimations only after 2004. This study uses deep learning to establish a model based on the convolutional neural network (CNN), which can estimate TC structure using satellite observations. This model is an objective and globally consistent TC structure analysis method. It is expected to help solve the insufficient temporal and spatial resolution of tropical cyclone structure observations. Since CNN is a supervised learning algorithm, labeling data are required to compute the loss function through the training process. Therefore, this study first uses the structural parameters of the best track data and a physically-based parametric wind model to estimate the axisymmetric wind speed structure of the TCs. Since the wind profiles are not close enough to the real situation, we use the ERA5 reanalysis data to correct the maximum wind and wind field at outer radii. Using this set of labeling data, we train the CNN model with the data from 2004 to 2016. With the testing data, the performance of our model is comparable with other studies. The intensity RMSE and storm wind radius MAE are 9.9 kt and 43.6 km, respectively. Independent verification of the 2017-2018 TCs using ASCAT and SAR sea surface wind observations shows that the deep learning model can estimate the TC structure reasonably. Results also show that TCs with weaker intensity have larger estimation errors of the wind speed, which may be due to the looser structure in the satellite images. For landfall TCs, the intensity errors are even larger. In addition, the estimation error is related to the spatial distribution of the dataset. With the objective method of this study, the reanalysis data of TC structure from 1981 to 2020 was reconstructed through satellite images, and the long-term trend of TC intensity and strength was analyzed using this data. The results show that the PDI (Power Dissipation Index) and angular momentum accumulation (AM_accum) are not significantly correlated with sea surface temperature (SST) in the Atlantic Ocean after 2005; that is, with the increase of SST, PDI and AM_accum have no significant increasing trend. Finally, we attempt to convert the one-dimensional axisymmetric wind speed profile into the two-dimensional wind field, and compare it with actual observations. The results show that the method could estimate the asymmetric wind speed structure of TC.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:38:45Z (GMT). No. of bitstreams: 1
U0001-1708202213103700.pdf: 3926972 bytes, checksum: b4fd47054c49ae3aa97793e5e12e195a (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 i 摘要 ii Abstract iii 目錄 v 表目錄 vii 圖目錄 viii 第一章 前言 1 1.1 研究背景 1 1.2 深度學習於熱帶氣旋相關研究成果 5 1.3 研究目的 6 第二章 資料及方法 8 2.1 衛星雲圖資料 8 2.2 標籤資料 9 2.3 深度學習模型 11 2.3.1 模型架構 11 2.3.2 損失函數設計 12 2.4 校驗方法 13 2.4.1 ASCAT 13 2.4.2 SAR 14 2.5 長期趨勢分析 14 2.5.1 趨勢分析統計方法 14 2.5.2 分位數迴歸(Quantile regression) 16 2.5.3 海表溫度與ENSO指數 16 第三章 模式結果分析 17 3.1 模式之平均及平滑 17 3.2 獨立校驗 18 3.3 2004至2016年間之模式訓練設計 19 第四章 熱帶氣旋結構估計誤差之探討 21 4.1 結構估計誤差在空間上的分布 21 4.2 強度與結構估計能力之關聯 22 4.3 熱帶氣旋大小與結構估計能力之關聯 22 第五章 重建熱帶氣旋結構再分析之可行性評估 24 5.1 重建1981至2003年間之熱帶氣旋結構再分析資料 24 5.2 熱帶氣旋結構再分析資料之氣候尺度分析 25 5.3 產製二維熱帶氣旋不對稱風場結構 27 第六章 討論與總結 29 6.1 模式結果之討論 29 6.2 總結 30 6.3 未來工作方向 32 參考資料 33 附錄 37 表 40 圖 42
dc.language.isozh-TW
dc.subject衛星觀測zh_TW
dc.subject熱帶氣旋結構zh_TW
dc.subject卷積神經網路zh_TW
dc.subjectTC structureen
dc.subjectCNNen
dc.subjectsatellite observationsen
dc.title以深度學習方法分析衛星雲圖並估計熱帶氣旋風場結構zh_TW
dc.titleAnalyzing tropical cyclone structure with a deep learning model utilizing satellite imageryen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.coadvisor陳柏孚(Buo-Fu Chen),李清勝(Cheng-Shang Lee)
dc.contributor.oralexamcommittee游政谷(Cheng-Ku Yu),楊明仁(Ming-Jen Yang)
dc.subject.keyword熱帶氣旋結構,卷積神經網路,衛星觀測,zh_TW
dc.subject.keywordTC structure,CNN,satellite observations,en
dc.relation.page65
dc.identifier.doi10.6342/NTU202202496
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
dc.date.embargo-lift2022-08-24-
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
U0001-1708202213103700.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved