請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85016完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉興華(Shing-Hwa Liu) | |
| dc.contributor.author | Yao-Pang Chung | en |
| dc.contributor.author | 鐘耀邦 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:38:19Z | - |
| dc.date.copyright | 2022-10-03 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-19 | |
| dc.identifier.citation | Afridi HI, Kazi TG, Kazi N, et al. (2013) Evaluation of status of arsenic, cadmium, lead and zinc levels in biological samples of normal and arthritis patients of age groups (46 - 60) and (61 - 75) years. Clin Lab 59(1-2):143-53 Akbal A, Yılmaz H, Tutkun E (2014) Arsenic exposure associated with decreased bone mineralization in male. Aging Male 17(4):256-8 https://doi.org/10.3109/13685538.2013.819326 Anerillas C, Abdelmohsen K, Gorospe M (2020) Regulation of senescence traits by MAPKs. Geroscience 42(2):397-408 https://doi.org/10.1007/s11357-020-00183-3 Antizar-Ladislao B (2008) Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. a review. b_antizar@hotmail.com. Environ Int 34(2):292-308 https://doi.org/10.1016/j.envint.2007.09.005 Ashraf S, Cha BH, Kim JS, et al. (2016) Regulation of senescence associated signaling mechanisms in chondrocytes for cartilage tissue regeneration. Osteoarthritis Cartilage 24(2):196-205 https://doi.org/10.1016/j.joca.2015.07.008 Baker AH, Watt J, Huang CK, Gerstenfeld LC, Schlezinger JJ (2015) Tributyltin engages multiple nuclear receptor pathways and suppresses osteogenesis in bone marrow multipotent stromal cells. Chem Res Toxicol 28(6):1156-66 https://doi.org/10.1021/tx500433r Baker AH, Wu TH, Bolt AM, Gerstenfeld LC, Mann KK, Schlezinger JJ (2017) From the Cover: Tributyltin Alters the Bone Marrow Microenvironment and Suppresses B Cell Development. Toxicol Sci 158(1):63-75 https://doi.org/10.1093/toxsci/kfx067 Brodziak-Dopierała B, Kowol J, Kwapuliński J, Kusz D, Cieliński Ł (2011) Lead and calcium content in the human hip joint. Biol Trace Elem Res 144(1-3):6-16 https://doi.org/10.1007/s12011-011-9014-0 Cai J, Wang M, Li B, Wang C, Chen Y, Zuo Z (2009) Apoptotic and necrotic action mechanisms of trimethyltin in human hepatoma G2 (HepG2) cells. Chem Res Toxicol 22(9):1582-7 https://doi.org/10.1021/tx900120z Cao X, Luo P, Huang J, et al. (2019) Intraarticular senescent chondrocytes impair the cartilage regeneration capacity of mesenchymal stem cells. Stem Cell Res Ther 10(1):86 https://doi.org/10.1186/s13287-019-1193-1 Centeno JA, Tseng CH, Van der Voet GB, Finkelman RB (2007) Global impacts of geogenic arsenic: a medical geology research case. Ambio 36(1):78-81 https://doi.org/10.1579/0044-7447(2007)36[78:giogaa]2.0.co;2 Chatterjee D, Bhattacharjee P, Sau TJ, et al. (2015) Arsenic exposure through drinking water leads to senescence and alteration of telomere length in humans: A case-control study in West Bengal, India. Mol Carcinog 54(9):800-9 https://doi.org/10.1002/mc.22150 Chen L, Zhao Y, Liu F, et al. (2022) Biological aging mediates the associations between urinary metals and osteoarthritis among U.S. adults. BMC Med 20(1):207 https://doi.org/10.1186/s12916-022-02403-3 Chen YJ, Chan DC, Lan KC, et al. (2015) PPARγ is involved in the hyperglycemia-induced inflammatory responses and collagen degradation in human chondrocytes and diabetic mouse cartilages. J Orthop Res 33(3):373-81 https://doi.org/10.1002/jor.22770 Cheng H, Qiu L, Zhang H, et al. (2011a) Arsenic trioxide promotes senescence and regulates the balance of adipogenic and osteogenic differentiation in human mesenchymal stem cells. Acta Biochim Biophys Sin (Shanghai) 43(3):204-9 https://doi.org/10.1093/abbs/gmq130 Cheng H, Qiu L, Zhang H, et al. (2011b) Arsenic trioxide promotes senescence and regulates the balance of adipogenic and osteogenic differentiation in human mesenchymal stem cells. Acta Biochim Biophys Sin 43(3):204-209 Chien LC, Hung TC, Choang KY, et al. (2002) Daily intake of TBT, Cu, Zn, Cd and As for fishermen in Taiwan. Sci Total Environ 285(1-3):177-85 https://doi.org/10.1016/s0048-9697(01)00916-0 Christoforidou EP, Riza E, Kales SN, et al. (2013) Bladder cancer and arsenic through drinking water: a systematic review of epidemiologic evidence. J Environ Sci Health A Tox Hazard Subst Environ Eng 48(14):1764-75 https://doi.org/10.1080/10934529.2013.823329 Chung YP, Chen YW, Weng TI, Yang RS, Liu SH (2020) Arsenic induces human chondrocyte senescence and accelerates rat articular cartilage aging. Arch Toxicol 94(1):89-101 https://doi.org/10.1007/s00204-019-02607-2 Collado M, Blasco MA, Serrano M (2007) Cellular senescence in cancer and aging. Cell 130(2):223-233 Coppé JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99-118 https://doi.org/10.1146/annurev-pathol-121808-102144 Coryell PR, Diekman BO, Loeser RF (2021) Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat Rev Rheumatol 17(1):47-57 https://doi.org/10.1038/s41584-020-00533-7 Dai SM, Shan ZZ, Nakamura H, et al. (2006) Catabolic stress induces features of chondrocyte senescence through overexpression of caveolin 1: possible involvement of caveolin 1-induced down-regulation of articular chondrocytes in the pathogenesis of osteoarthritis. Arthritis Rheum 54(3):818-31 https://doi.org/10.1002/art.21639 Dani SU, Walter GF (2018) Chronic arsenic intoxication diagnostic score (CAsIDS). J Appl Toxicol 38(1):122-144 https://doi.org/10.1002/jat.3512 de Keizer PL, Packer LM, Szypowska AA, et al. (2010) Activation of forkhead box O transcription factors by oncogenic BRAF promotes p21cip1-dependent senescence. Cancer Res 70(21):8526-36 https://doi.org/10.1158/0008-5472.Can-10-1563 Deshpande BR, Katz JN, Solomon DH, et al. (2016) Number of Persons With Symptomatic Knee Osteoarthritis in the US: Impact of Race and Ethnicity, Age, Sex, and Obesity. Arthritis Care Res (Hoboken) 68(12):1743-1750 https://doi.org/10.1002/acr.22897 Di Micco R, Krizhanovsky V, Baker D, d'Adda di Fagagna F (2021) Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol 22(2):75-95 https://doi.org/10.1038/s41580-020-00314-w Diekman BO, Sessions GA, Collins JA, et al. (2018) Expression of p16(INK) (4a) is a biomarker of chondrocyte aging but does not cause osteoarthritis. Aging Cell 17(4):e12771 https://doi.org/10.1111/acel.12771 Dieppe PA, Lohmander LS (2005) Pathogenesis and management of pain in osteoarthritis. Lancet 365(9463):965-73 https://doi.org/10.1016/s0140-6736(05)71086-2 Dimozi A, Mavrogonatou E, Sklirou A, Kletsas D (2015) Oxidative stress inhibits the proliferation, induces premature senescence and promotes a catabolic phenotype in human nucleus pulposus intervertebral disc cells. Eur Cell Mater 30:89-102; discussion 103 https://doi.org/10.22203/ecm.v030a07 Fan Z, Söder S, Oehler S, Fundel K, Aigner T (2007) Activation of interleukin-1 signaling cascades in normal and osteoarthritic articular cartilage. Am J Pathol 171(3):938-46 https://doi.org/10.2353/ajpath.2007.061083 Farr JN, Fraser DG, Wang H, et al. (2016) Identification of Senescent Cells in the Bone Microenvironment. J Bone Miner Res 31(11):1920-1929 https://doi.org/10.1002/jbmr.2892 Feng X, Pan J, Li J, et al. (2020) Metformin attenuates cartilage degeneration in an experimental osteoarthritis model by regulating AMPK/mTOR. Aging (Albany NY) 12(2):1087-1103 https://doi.org/10.18632/aging.102635 Feussner JR, Shelburne JD, Bredehoeft S, Cohen HJ (1979) Arsenic-induced bone marrow toxicity: ultrastructural and electron-probe analysis. Blood 53(5):820-7 Fitzner B, Müller S, Walther M, et al. (2012) Senescence determines the fate of activated rat pancreatic stellate cells. J Cell Mol Med 16(11):2620-30 https://doi.org/10.1111/j.1582-4934.2012.01573.x Frangos T, Maret W (2020) Zinc and Cadmium in the Aetiology and Pathogenesis of Osteoarthritis and Rheumatoid Arthritis. Nutrients 13(1) https://doi.org/10.3390/nu13010053 Fujita Y, Makishima M, Bhawal UK (2016) Differentiated embryo chondrocyte 1 (DEC1) is a novel negative regulator of hepatic fibroblast growth factor 21 (FGF21) in aging mice. Biochem Biophys Res Commun 469(3):477-82 https://doi.org/10.1016/j.bbrc.2015.12.045 Fumagalli M, Rossiello F, Clerici M, et al. (2012) Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol 14(4):355-65 https://doi.org/10.1038/ncb2466 Gadogbe M, Bao W, Wels BR, et al. (2019) Levels of tin and organotin compounds in human urine samples from Iowa, United States. J Environ Sci Health A Tox Hazard Subst Environ Eng 54(9):884-890 https://doi.org/10.1080/10934529.2019.1605779 Gao SG, Zeng C, Li LJ, et al. (2016) Correlation between senescence-associated beta-galactosidase expression in articular cartilage and disease severity of patients with knee osteoarthritis. Int J Rheum Dis 19(3):226-32 https://doi.org/10.1111/1756-185x.12096 Gonzalez Rodriguez B, Rietveld LC, Longley AJ, van Halem D (2019) Arsenic contamination of rural community wells in Nicaragua: A review of two decades of experience. Sci Total Environ 657:1441-1449 https://doi.org/10.1016/j.scitotenv.2018.12.168 Grote C, Reinhardt D, Zhang M, Wang J (2019) Regulatory mechanisms and clinical manifestations of musculoskeletal aging. J Orthop Res 37(7):1475-1488 https://doi.org/10.1002/jor.24292 Guo Q, Chen X, Chen J, et al. (2021) STING promotes senescence, apoptosis, and extracellular matrix degradation in osteoarthritis via the NF-κB signaling pathway. Cell Death Dis 12(1):13 https://doi.org/10.1038/s41419-020-03341-9 Han Y, Zhou CM, Shen H, et al. (2020) Attenuation of ataxia telangiectasia mutated signalling mitigates age‐associated intervertebral disc degeneration. Aging Cell 19(7):e13162 Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585-621 https://doi.org/10.1016/0014-4827(61)90192-6 He DS, Hu XJ, Yan YQ, Liu H (2017) Underlying mechanism of Sirt1 on apoptosis and extracellular matrix degradation of osteoarthritis chondrocytes. Mol Med Rep 16(1):845-850 https://doi.org/10.3892/mmr.2017.6659 Holz JD, Sheu TJ, Drissi H, Matsuzawa M, Zuscik MJ, Puzas JE (2007) Environmental agents affect skeletal growth and development. Birth Defects Res C Embryo Today 81(1):41-50 https://doi.org/10.1002/bdrc.20087 Hong EH, Lee SJ, Kim JS, et al. (2010) Ionizing radiation induces cellular senescence of articular chondrocytes via negative regulation of SIRT1 by p38 kinase. J Biol Chem 285(2):1283-95 https://doi.org/10.1074/jbc.M109.058628 Hsu LI, Wang YH, Hsieh FI, et al. (2016) Effects of Arsenic in Drinking Water on Risk of Hepatitis or Cirrhosis in Persons With and Without Chronic Viral Hepatitis. Clin Gastroenterol Hepatol 14(9):1347-1355.e4 https://doi.org/10.1016/j.cgh.2016.03.043 Huang CF, Yang CY, Chan DC, et al. (2015) Arsenic Exposure and Glucose Intolerance/Insulin Resistance in Estrogen-Deficient Female Mice. Environ Health Perspect 123(11):1138-44 https://doi.org/10.1289/ehp.1408663 Huhmann BL, Harvey CF, Navas-Acien A, et al. (2019) Changes in arsenic exposure in Araihazar, Bangladesh from 2001 through 2015 following a blanket well testing and education campaign. Environ Int 125:82-89 https://doi.org/10.1016/j.envint.2019.01.026 Hwang JJ, Rim YA, Nam Y, Ju JH (2021) Recent Developments in Clinical Applications of Mesenchymal Stem Cells in the Treatment of Rheumatoid Arthritis and Osteoarthritis. Front Immunol 12:631291 https://doi.org/10.3389/fimmu.2021.631291 Jeon OH, David N, Campisi J, Elisseeff JH (2018) Senescent cells and osteoarthritis: a painful connection. J Clin Invest 128(4):1229-1237 https://doi.org/10.1172/jci95147 Jeon OH, Kim C, Laberge RM, et al. (2017) Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 23(6):775-781 https://doi.org/10.1038/nm.4324 Jiao G, Ren T, Guo W, Ren C, Yang K (2015) Arsenic trioxide inhibits growth of human chondrosarcoma cells through G2/M arrest and apoptosis as well as autophagy. Tumour Biol 36(5):3969-77 https://doi.org/10.1007/s13277-015-3040-z Johnson VL, Hunter DJ (2014) The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol 28(1):5-15 https://doi.org/10.1016/j.berh.2014.01.004 Jun JI, Lau LF (2010) The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 12(7):676-85 https://doi.org/10.1038/ncb2070 Kanatsu-Shinohara M, Yamamoto T, Toh H, et al. (2019) Aging of spermatogonial stem cells by Jnk-mediated glycolysis activation. Proc Natl Acad Sci U S A 116(33):16404-16409 https://doi.org/10.1073/pnas.1904980116 Kang C, Xu Q, Martin TD, et al. (2015) The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349(6255):aaa5612 https://doi.org/10.1126/science.aaa5612 Kang D, Shin J, Cho Y, et al. (2019) Stress-activated miR-204 governs senescent phenotypes of chondrocytes to promote osteoarthritis development. Sci Transl Med 11(486) https://doi.org/10.1126/scitranslmed.aar6659 Kang SW, Kim J, Shin DY (2016) Inhibition of senescence and promotion of the proliferation of chondrocytes from articular cartilage by CsA and FK506 involves inhibition of p38MAPK. Mech Ageing Dev 153:7-13 https://doi.org/10.1016/j.mad.2015.12.002 Kannan K, Senthilkumar K, Giesy JP (1999) Occurrence of butyltin compounds in human blood. Environmental science & technology 33(10):1776-1779 Khairul I, Wang QQ, Jiang YH, Wang C, Naranmandura H (2017) Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget 8(14):23905-23926 https://doi.org/10.18632/oncotarget.14733 Kim HN, Chang J, Shao L, et al. (2017) DNA damage and senescence in osteoprogenitors expressing Osx1 may cause their decrease with age. Aging Cell 16(4):693-703 https://doi.org/10.1111/acel.12597 Kim K, Park H (2021) Machine-learning models predicting osteoarthritis associated with the lead blood level. Environ Sci Pollut Res Int 28(32):44079-44084 https://doi.org/10.1007/s11356-021-13887-6 Kim KH, Park B, Rhee DK, Pyo S (2015) Acrylamide Induces Senescence in Macrophages through a Process Involving ATF3, ROS, p38/JNK, and a Telomerase-Independent Pathway. Chem Res Toxicol 28(1):71-86 https://doi.org/10.1021/tx500341z Kumari R, Jat P (2021) Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cell Dev Biol 9:645593 https://doi.org/10.3389/fcell.2021.645593 Kuo HW, Kuo SM, Chou CH, Lee TC (2000) Determination of 14 elements in Taiwanese bones. Sci Total Environ 255(1-3):45-54 https://doi.org/10.1016/s0048-9697(00)00448-4 Kuwahara M, Kadoya K, Kondo S, et al. (2020) CCN3 (NOV) Drives Degradative Changes in Aging Articular Cartilage. Int J Mol Sci 21(20) https://doi.org/10.3390/ijms21207556 Lanna A, Henson SM, Escors D, Akbar AN (2014) The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nat Immunol 15(10):965-72 https://doi.org/10.1038/ni.2981 Laranjeiro F, Sánchez-Marín P, Oliveira IB, Galante-Oliveira S, Barroso C (2018) Fifteen years of imposex and tributyltin pollution monitoring along the Portuguese coast. Environ Pollut 232:411-421 https://doi.org/10.1016/j.envpol.2017.09.056 Lawrence S, Pellom ST, Jr., Shanker A, Whalen MM (2016) Tributyltin exposure alters cytokine levels in mouse serum. J Immunotoxicol 13(6):870-878 https://doi.org/10.1080/1547691x.2016.1221867 Lee CC, Hsieh CY, Tien CJ (2006) Factors influencing organotin distribution in different marine environmental compartments, and their potential health risk. Chemosphere 65(4):547-59 https://doi.org/10.1016/j.chemosphere.2006.02.037 Lee JJ, Lee JH, Ko YG, Hong SI, Lee JS (2010) Prevention of premature senescence requires JNK regulation of Bcl-2 and reactive oxygen species. Oncogene 29(4):561-75 https://doi.org/10.1038/onc.2009.355 Li Y, Liu J, Li Q (2010) Mechanisms by which the antitumor compound di-n-butyl-di-(4-chlorobenzohydroxamato)tin(IV) induces apoptosis and the mitochondrial-mediated signaling pathway in human cancer SGC-7901 cells. Mol Carcinog 49(6):566-81 https://doi.org/10.1002/mc.20623 Liang CP, Wang SW, Kao YH, Chen JS (2016) Health risk assessment of groundwater arsenic pollution in southern Taiwan. Environ Geochem Health 38(6):1271-1281 https://doi.org/10.1007/s10653-016-9794-4 Liu CW (2019) Reactive transport of arsenic-enriched geothermal spring water into a sedimentary aquifer. Environ Geochem Health 41(2):633-648 https://doi.org/10.1007/s10653-018-0156-2 Loeser RF, Collins JA, Diekman BO (2016) Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12(7):412-20 https://doi.org/10.1038/nrrheum.2016.65 Lou C, Deng A, Zheng H, et al. (2020) Pinitol suppresses TNF-α-induced chondrocyte senescence. Cytokine 130:155047 https://doi.org/10.1016/j.cyto.2020.155047 Ma Y, Qi M, An Y, et al. (2018) Autophagy controls mesenchymal stem cell properties and senescence during bone aging. Aging Cell 17(1) https://doi.org/10.1111/acel.12709 Mannan T, Ahmed S, Akhtar E, et al. (2018) Associations of Arsenic Exposure With Telomere Length and Nave T Cells in Childhood-A Birth Cohort Study. Toxicol Sci 164(2):539-549 https://doi.org/10.1093/toxsci/kfy105 Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. (2016) Osteoarthritis. Nat Rev Dis Primers 2:16072 https://doi.org/10.1038/nrdp.2016.72 Martín-Pardillos A, Sosa C, Sorribas V (2013) Arsenic increases Pi-mediated vascular calcification and induces premature senescence in vascular smooth muscle cells. Toxicol Sci 131(2):641-53 https://doi.org/10.1093/toxsci/kfs313 McCulloch K, Litherland GJ, Rai TS (2017) Cellular senescence in osteoarthritis pathology. Aging Cell 16(2):210-218 https://doi.org/10.1111/acel.12562 McHugh D, Gil J (2018) Senescence and aging: Causes, consequences, and therapeutic avenues. J Cell Biol 217(1):65-77 https://doi.org/10.1083/jcb.201708092 Medina-Pizzali M, Robles P, Mendoza M, Torres C (2018) [Arsenic Intake: Impact in Human Nutrition and Health]. Rev Peru Med Exp Salud Publica 35(1):93-102 https://doi.org/10.17843/rpmesp.2018.351.3604 Mino Y, Amano F, Yoshioka T, Konishi Y (2008) Determination of organotins in human breast milk by gas chromatography with flame photometric detection. Journal of health science 54(2):224-228 Muñoz-Espín D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15(7):482-96 https://doi.org/10.1038/nrm3823 Naujokas MF, Anderson B, Ahsan H, et al. (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121(3):295-302 https://doi.org/10.1289/ehp.1205875 Nielsen GP, Stemmer-Rachamimov AO, Shaw J, Roy JE, Koh J, Louis DN (1999) Immunohistochemical survey of p16INK4A expression in normal human adult and infant tissues. Lab Invest 79(9):1137-43 Pelletier JP, Roughley PJ, DiBattista JA, McCollum R, Martel-Pelletier J (1991) Are cytokines involved in osteoarthritic pathophysiology? Semin Arthritis Rheum 20(6 Suppl 2):12-25 https://doi.org/10.1016/0049-0172(91)90024-t Qin R, Sun J, Wu J, Chen L (2019) Pyrroloquinoline quinone prevents knee osteoarthritis by inhibiting oxidative stress and chondrocyte senescence. Am J Transl Res 11(3):1460-1472 Resgala LCR, Santana HS, Portela BSM, et al. (2019) Effects of Tributyltin (TBT) on Rat Bone and Mineral Metabolism. Cell Physiol Biochem 52(5):1166-1177 https://doi.org/10.33594/000000079 Roach HI, Yamada N, Cheung KS, et al. (2005) Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum 52(10):3110-24 https://doi.org/10.1002/art.21300 Sacitharan PK (2019) Ageing and Osteoarthritis. Subcell Biochem 91:123-159 https://doi.org/10.1007/978-981-13-3681-2_6 Schøyen M, Green NW, Hjermann D, et al. (2019) Levels and trends of tributyltin (TBT) and imposex in dogwhelk (Nucella lapillus) along the Norwegian coastline from 1991 to 2017. Mar Environ Res 144:1-8 https://doi.org/10.1016/j.marenvres.2018.11.011 Seluanov A, Gorbunova V, Falcovitz A, et al. (2001) Change of the death pathway in senescent human fibroblasts in response to DNA damage is caused by an inability to stabilize p53. Mol Cell Biol 21(5):1552-64 https://doi.org/10.1128/mcb.21.5.1552-1564.2001 Sessions GA, Copp ME, Liu JY, Sinkler MA, D'Costa S, Diekman BO (2019) Controlled induction and targeted elimination of p16(INK4a)-expressing chondrocytes in cartilage explant culture. Faseb j 33(11):12364-12373 https://doi.org/10.1096/fj.201900815RR Sharma S, Kaur I, Nagpal AK (2017) Assessment of arsenic content in soil, rice grains and groundwater and associated health risks in human population from Ropar wetland, India, and its vicinity. Environ Sci Pollut Res Int 24(23):18836-18848 https://doi.org/10.1007/s11356-017-9401-y Sorrentino JA, Krishnamurthy J, Tilley S, Alb JG, Jr., Burd CE, Sharpless NE (2014) p16INK4a reporter mice reveal age-promoting effects of environmental toxicants. J Clin Invest 124(1):169-73 https://doi.org/10.1172/jci70960 Soto-Gamez A, Quax WJ, Demaria M (2019) Regulation of Survival Networks in Senescent Cells: From Mechanisms to Interventions. J Mol Biol 431(15):2629-2643 https://doi.org/10.1016/j.jmb.2019.05.036 Srikanth VK, Fryer JL, Zhai G, Winzenberg TM, Hosmer D, Jones G (2005) A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis. Osteoarthritis Cartilage 13(9):769-81 https://doi.org/10.1016/j.joca.2005.04.014 Sulli G, Di Micco R, d'Adda di Fagagna F (2012) Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nat Rev Cancer 12(10):709-20 https://doi.org/10.1038/nrc3344 Szymczyk KH, Kerr BA, Freeman TA, Adams CS, Steinbeck MJ (2006) Involvement of hydrogen peroxide in the differentiation and apoptosis of preosteoclastic cells exposed to arsenite. Biochem Pharmacol 72(6):761-9 https://doi.org/10.1016/j.bcp.2006.06.027 Trachana V, Mourmoura E, Papathanasiou I, Tsezou A (2019) Understanding the role of chondrocytes in osteoarthritis: utilizing proteomics. Expert Rev Proteomics 16(3):201-213 https://doi.org/10.1080/14789450.2019.1571918 Tutkun L, Gunduzoz M, Turksoy VA, et al. (2019) Arsenic-induced inflammation in workers. Mol Biol Rep 46(2):2371-2378 https://doi.org/10.1007/s11033-019-04694-x Vinatier C, Domínguez E, Guicheux J, Caramés B (2018) Role of the Inflammation-Autophagy-Senescence Integrative Network in Osteoarthritis. Front Physiol 9:706 https://doi.org/10.3389/fphys.2018.00706 Vos JG, De Klerk A, Krajnc EI, Van Loveren H, Rozing J (1990) Immunotoxicity of bis(tri-n-butyltin)oxide in the rat: effects on thymus-dependent immunity and on nonspecific resistance following long-term exposure in young versus aged rats. Toxicol Appl Pharmacol 105(1):144-55 https://doi.org/10.1016/0041-008x(90)90366-3 Wan H, Goodkind D, Kowal P (2016) An aging world: 2015. International population reports Wang SL, Li WF, Chen CJ, et al. (2011) Hypertension incidence after tap-water implementation: a 13-year follow-up study in the arseniasis-endemic area of southwestern Taiwan. Sci Total Environ 409(21):4528-35 https://doi.org/10.1016/j.scitotenv.2011.07.058 Wang T, Yuan Y, Zou H, et al. (2016) The ER stress regulator Bip mediates cadmium-induced autophagy and neuronal senescence. Sci Rep 6:38091 https://doi.org/10.1038/srep38091 Wang Y, Bai L (2019) Resveratrol inhibits apoptosis by increase in the proportion of chondrocytes in the S phase of cell cycle in articular cartilage of ACLT plus Mmx rats. Saudi J Biol Sci 26(4):839-844 https://doi.org/10.1016/j.sjbs.2017.04.010 Wang Y, Wang S, Luo X, et al. (2014) The roles of DNA damage-dependent signals and MAPK cascades in tributyltin-induced germline apoptosis in Caenorhabditis elegans. Chemosphere 108:231-8 https://doi.org/10.1016/j.chemosphere.2014.01.045 Watt J, Baker AH, Meeks B, et al. (2018) Tributyltin induces distinct effects on cortical and trabecular bone in female C57Bl/6J mice. J Cell Physiol 233(9):7007-7021 https://doi.org/10.1002/jcp.26495 Watt J, Schlezinger JJ (2015) Structurally-diverse, PPARγ-activating environmental toxicants induce adipogenesis and suppress osteogenesis in bone marrow mesenchymal stromal cells. Toxicology 331:66-77 https://doi.org/10.1016/j.tox.2015.03.006 Wu CT, Lu TY, Chan DC, Tsai KS, Yang RS, Liu SH (2014) Effects of arsenic on osteoblast differentiation in vitro and on bone mineral density and microstructure in rats. Environ Health Perspect 122(6):559-65 https://doi.org/10.1289/ehp.1307832 Xia B, Di C, Zhang J, Hu S, Jin H, Tong P (2014) Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif Tissue Int 95(6):495-505 https://doi.org/10.1007/s00223-014-9917-9 Yamaguchi Y, Madhyastha H, Madhyastha R, et al. (2016) Arsenic acid inhibits proliferation of skin fibroblasts, and increases cellular senescence through ROS mediated MST1-FOXO signaling pathway. J Toxicol Sci 41(1):105-13 https://doi.org/10.2131/jts.41.105 Yao W, Wei X, Guo H, et al. (2020) Tributyltin reduces bone mineral density by reprograming bone marrow mesenchymal stem cells in rat. Environ Toxicol Pharmacol 73:103271 https://doi.org/10.1016/j.etap.2019.103271 Yen YP, Tsai KS, Chen YW, Huang CF, Yang RS, Liu SH (2010) Arsenic inhibits myogenic differentiation and muscle regeneration. Environ Health Perspect 118(7):949-56 https://doi.org/10.1289/ehp.0901525 Yi JK, Kim HJ, Yu DH, et al. (2012) Regulation of inflammatory responses and fibroblast-like synoviocyte apoptosis by calcineurin-binding protein 1 in mice with collagen-induced arthritis. Arthritis Rheum 64(7):2191-200 https://doi.org/10.1002/art.34398 Yosef R, Pilpel N, Papismadov N, et al. (2017) p21 maintains senescent cell viability under persistent DNA damage response by restraining JNK and caspase signaling. Embo j 36(15):2280-2295 https://doi.org/10.15252/embj.201695553 Zhang D, Chen Y, Xu X, et al. (2020a) Autophagy inhibits the mesenchymal stem cell aging induced by D-galactose through ROS/JNK/p38 signalling. Clin Exp Pharmacol Physiol 47(3):466-477 https://doi.org/10.1111/1440-1681.13207 Zhang J, He T, Xue L, Guo H (2021) Senescent T cells: a potential biomarker and target for cancer therapy. EBioMedicine 68:103409 https://doi.org/10.1016/j.ebiom.2021.103409 Zhang J, Zuo Z, Sun P, Wang H, Yu A, Wang C (2012) Tributyltin exposure results in craniofacial cartilage defects in rockfish (Sebastiscus marmoratus) embryos. Mar Environ Res 77:6-11 https://doi.org/10.1016/j.marenvres.2011.12.008 Zhang Y, Xu B, Guo Z, et al. (2019) Human health risk assessment of groundwater arsenic contamination in Jinghui irrigation district, China. J Environ Manage 237:163-169 https://doi.org/10.1016/j.jenvman.2019.02.067 Zhang Y, Zhou S, Cai W, et al. (2020b) Hypoxia/reoxygenation activates the JNK pathway and accelerates synovial senescence. Mol Med Rep 22(1):265-276 https://doi.org/10.3892/mmr.2020.11102 Zindy F, Quelle DE, Roussel MF, Sherr CJ (1997) Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 15(2):203-11 https://doi.org/10.1038/sj.onc.1201178 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85016 | - |
| dc.description.abstract | 隨著醫療文化的提高,全球老年人口逐漸增加。其中亞洲老齡化社會正在快速增長。年齡的增長與骨關節炎的患病率之間存在關聯性。先前的流行病學研究表明女性相比於男性更容易患上更嚴重的膝關節關節炎。雖然關節軟骨會隨著年齡的增長而退化,但環境污染物(如金屬)接觸也可能是影響因素之一。一些研究表明接觸金屬會增加骨關節炎的風險,這可能是由於細胞衰老的介入。其中,砷(Arsenic, As)暴露會促進人類間充質乾細胞細胞衰老,並且在關節炎患者血清中發現含有砷的存在。在關節炎發展中,三丁基錫(Tributyltin, TBT)暴露會促進免疫衰老微環境,並且可以在人類的血液和組織中找到TBT。然而,As和TBT暴露對軟骨細胞的毒理作用和調控機制仍有待釐清。在本研究中,我們研究衰老和衰老相關分泌因子的影響,並分別研究了As (1-5 μM)和TBT (0.01-0.5 μM)暴露於人類關節軟骨細胞。As和TBT暴露軟骨細胞24小時顯著增加與衰老相關的beta-半乳糖苷酶活性和衰老標誌物p16、p53和p21的蛋白表達。As誘導p38 mitogen-activated protein kinases (p38)和c-Jun N-terminal kinase (JNK)蛋白磷酸化,並通過p38和JNK抑製劑逆轉軟骨細胞衰老。TBT誘導ataxia telangiectasia mutated kinase (ATM)蛋白磷酸化,並通過ATM抑製劑抑制γH2AX、p-p38、p-JNK、p16、p53和p21蛋白表達。再進一步在軟骨細胞中As和TBT顯著刺激衰老相關分泌表型(senescence-associated secretory phenotype, SASP)相關的mRNA基因表達,包括IL-1α/β、TGF-β、TNF-α、ICAM-1、CCL2、PAI-1和MMP-13,以及NF-κB-p65的磷酸化和GATA4的蛋白表達。同樣地,我們還觀察到在動物模式中給予含As (0.05和0.5 ppm)飲用水9個月或TBT (5和25 μg/kg)管餵處理28天,皆會導致關節軟骨老化和磨損。並且衰老相關蛋白和SASP相關蛋白在老鼠軟骨中的表達增強。總而言之,這些結果皆表明As和TBT的暴露可以在體外模式下引起人類關節軟骨細胞衰老,並且在體內模式下增強小鼠關節軟骨的老化和磨損。 | zh_TW |
| dc.description.abstract | With the improvement in medical culture, the global elderly population has gradually increased. Among them, Asia's aging society is growing rapidly. There is a conjunction between the increasing age and the prevalence of osteoarthritis (OA). The previous epidemiological study have displayed that women are more prone to develop more severe knee osteoarthritis compared to men. Although the articular cartilage degeneration with age, contact with environmental pollutants (such as metals) may also be one of the effects. Some studies have indicated that exposure to metals assisted OA risk, and that was possibly mediated by senescence. Arsenic exposure has been proposed to advance senescence in human mesenchymal stem cells and arsenic (As) levels in the serum of patients with arthritis have been found. Tributyltin (TBT) exposure has promoted the immunosenescence microenvironment in arthritis development and can be found in the blood and tissues of the mankind. However, the toxicological effects and mechanisms of As and TBT exposure on chondrocytes still remain to be clarified. In this study, we researched the effects of senescence and senescence-associated secretory factors and cultured human chondrocytes-articular cells exposed to As (1-5 μM) and TBT (0.01-0.5 μM), individually. As and TBT for 24 hours significantly increased the senescence-related beta-galactosidase activity and the protein expression levels of senescence markers p16, p53, and p21 in chondrocytes. As increased the phosphorylation of p38 mitogen-activated protein kinases (p38) and c-Jun N-terminal kinase (JNK) proteins, and reversed chondrocyte senescence by p38 and JNK inhibitors. TBT induced the phosphorylation of ataxia telangiectasia mutated kinase (ATM) proteins and inhibited the protein expression levels of γH2AX, p-p38, p-JNK, p16, p53, and p21 by ATM inhibitor. Next, As and TBT significantly stimulated the mRNA expression of senescence-related secretory phenotype (SASP)-related factors, including IL-1α/β, TNF-α, TGF-β, ICAM-1, PAI-1, CCL2, and MMP-13, and the protein expression of phosphorylated NF-κB-p65 and GATA4 in chondrocytes. Similarly, we also observed that administration of As (0.05 and 0.5 ppm) drinking water for 9 months or TBT (5 and 25 μg/kg) gavage for 28 days resulted in aging and wear of articular cartilage in mouse models. The expression of senescence-associated protein and SASP-related protein were strengthened in the mouse cartilages. Taken together, these results suggest that As and TBT exposure can trigger human articular chondrocytes senescence in vitro and enhance mouse articular cartilage abrasion and aging in vivo. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:38:19Z (GMT). No. of bitstreams: 1 U0001-1908202210522900.pdf: 5108718 bytes, checksum: e07d0a85d84e415faec6d368f184e5a5 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 ii 中文摘要 iii Abstract iv List of Abbreviation xi Chapter 1. Introduction 1 1.1 Background 1 1.2 The development of senescence in articular cartilage aging 5 1.3 Correlation between arsenic and chondrocyte senescence 12 1.4 Correlation between tributyltin and chondrocyte senescence 13 1.5 Purpose of this study 15 Chapter 2. Materials and Methods 16 2.1 Preparation of Treated Reagents 16 2.1.1 Arsenic trioxide 16 2.1.2 Tributyltin chloride 16 2.2 Human Chondrocytes-articular 16 2.3 Determination of cell viability 16 2.4 Cell cycle analysis 17 2.5 Staining for senescence-associated β-galactosidase (SA‐β‐gal) 17 2.6 Experimental Animals 18 2.6.1 Male Wistar rats Treatment with As2O3 18 2.6.2 ICR mice Treatment with TBT 18 2.7 Protein expression analysis 19 2.8 Quantitative Real-Time PCR (qPCR) analysis 20 2.9 Safranin O staining 20 2.10 Histological score of cartilage 21 2.11 Immunohistochemistry (IHC) staining 21 2.12 Detection of arsenic contents 22 2.13 Statistical analysis 22 Chapter 3. Results and Discussion 23 3.1 Arsenic induces human chondrocyte senescence and accelerates rat articular cartilage aging 23 3.1.1 Results 23 3.1.2 Discussion 26 3.2 Low-dose tributyltin triggers human chondrocyte senescence and mouse articular cartilage aging 32 3.2.1 Results 32 3.2.2 Discussion 35 Chapter 4. Conclusion and Future Perspectives 40 Figures 42 Table 80 References 81 Appendix 98 List of figures Figure 1 Arsenic induced cellular senescence in HC-a cells. 42 Figure 2 Arsenic induced cell cycle arrest in HC-a cells. 43 Figure 3 Arsenic induced cellular senescence in HC-a cells. 44 Figure 4 Involvement of p38 and JNK-dependent signaling pathway in arsenic-induced cellular senescence. 45 Figure 5 Involvement of p38-dependent signaling pathway in arsenic-induced cellular senescence. 46 Figure 6 Involvement of JNK-dependent signaling pathway in arsenic-induced cellular senescence. 47 Figure 7 Involvement of p38 and JNK in arsenic-increased SA‐β‐gal activity in HC-a cells. 48 Figure 8 Involvement of GATA4/NF-κB signaling in arsenic-induced cellular senescence. 49 Figure 9 Involvement of SASP production in arsenic-induced cellular senescence. 50 Figure 10 Intracellular of arsenic expression in arsenic-induced senescence. 51 Figure 11 Long-term arsenic exposure strengthens cartilage aging in rats. 52 Figure 12 Long-term arsenic exposure strengthens cartilage aging in rats. 53 Figure 13 Long-term arsenic exposure strengthens cartilage destruction in rats. 54 Figure 14 Long-term arsenic exposure involved p38-/JNK-dependent signaling pathways in rats. 55 Figure 15 Long-term arsenic exposure involved GATA4/NF-κB-dependent signaling pathways in rats. 56 Figure 16 Long-term arsenic exposure involved GATA4/NF-κB-dependent signaling pathways in rats. 57 Figure 17 Long-term arsenic exposure involved GATA4/NF-κB-dependent signaling pathways in rats. 58 Figure 18 Effects of TBT on cell viability in human chondrocytes. 59 Figure 19 Effects of TBT on cellular senescence in human chondrocytes. 60 Figure 20 Effects of TBT on cellular senescence in human chondrocytes. 61 Figure 21 The role of p38 and JNK in human chondrocytes. 62 Figure 22 The role of p38 in TBT-induced senescence signals in human chondrocytes. 63 Figure 23 The role of JNK in TBT-induced senescence signals in human chondrocytes. 64 Figure 24 Involvement of ATM-related signaling pathway in TBT-induced senescence in human chondrocytes. 65 Figure 25 Involvement of ATM-related signaling pathway in TBT-induced senescence in human chondrocytes. 66 Figure 26 Involvement of ATM-related signaling pathway in TBT-induced senescence in human chondrocytes. 67 Figure 27 Involvement of ATM-related signaling pathway in TBT-induced senescence in human chondrocytes. 68 Figure 28 Effects of TBT on GATA4- NF-κB signaling in human chondrocytes. 69 Figure 29 Effects of TBT on SASP induction in human chondrocytes. 70 Figure 30 TBT exposure induced cartilages abrasion in mice. 71 Figure 31 TBT exposure induced cartilages aging in mice. 72 Figure 32 TBT exposure induced p38 and JNK phosphorylation in the cartilages of mice. 73 Figure 33 TBT exposure induced ATM phosphorylation. 74 Figure 34 TBT exposure induced γH2AX phosphorylation. 75 Figure 35 TBT exposure induced GATA4/NF-κB signals in the cartilages of mice. 76 Figure 36 TBT exposure induced SASP induction in the cartilages of mice. 77 Figure 37 Arsenic caused p38/JNK-mediated chondrocyte senescence and promoted SASP induction through NF-κB/GATA4-dependent signaling pathways. 78 Figure 38 Tributyltin induced chondrocyte senescence via ATM-mediated p38/JNK and SASP production through NF-κB/GATA4-dependent signaling pathways. 79 | |
| dc.language.iso | en | |
| dc.subject | 關節軟骨 | zh_TW |
| dc.subject | 人軟骨細胞 | zh_TW |
| dc.subject | 三丁基錫 | zh_TW |
| dc.subject | 砷 | zh_TW |
| dc.subject | 細胞衰老 | zh_TW |
| dc.subject | 老化 | zh_TW |
| dc.subject | 衰老相關分泌表型 | zh_TW |
| dc.subject | Tributyltin | en |
| dc.subject | Human chondrocyte | en |
| dc.subject | Arsenic | en |
| dc.subject | Articular cartilage | en |
| dc.subject | Senescence | en |
| dc.subject | Aging | en |
| dc.subject | Senescence-associated secretory phenotype | en |
| dc.title | 環境汙染物誘發軟骨細胞衰老且增強關節軟骨老化:以三氧化二砷和三丁基錫為例 | zh_TW |
| dc.title | Environmental Pollutants Induce Chondrocytes Senescence and Accelerates Articular Cartilage Aging: Examples of Arsenic Trioxide and Tributyltin | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 姜至剛(Chih-Kang Chiang),楊榮森(Rong-Sen Yang),洪冠予(Kuan-Yu Hung),許美鈴(Meei-Ling Sheu) | |
| dc.subject.keyword | 砷,三丁基錫,人軟骨細胞,關節軟骨,細胞衰老,老化,衰老相關分泌表型, | zh_TW |
| dc.subject.keyword | Arsenic,Tributyltin,Human chondrocyte,Articular cartilage,Senescence,Aging,Senescence-associated secretory phenotype, | en |
| dc.relation.page | 98 | |
| dc.identifier.doi | 10.6342/NTU202202573 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-10-03 | - |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1908202210522900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
