請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85006
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 藍俊宏 | zh_TW |
dc.contributor.advisor | Jakey Blue | en |
dc.contributor.author | 邱秉誠 | zh_TW |
dc.contributor.author | Bing-Cheng Qiu | en |
dc.date.accessioned | 2023-03-19T22:37:43Z | - |
dc.date.available | 2023-12-27 | - |
dc.date.copyright | 2022-08-24 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Susstrunk, S. (2012). SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34. doi:10.1109/TPAMI.2012.120 Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., & Kim, B. (2018). Sanity checks for saliency maps. Paper presented at the Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, Canada. Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., . . . Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of big data, 8(1), 53-53. doi:10.1186/s40537-021-00444-8 Ancona, M., Ceolini, E., Öztireli, C., & Gross, M. H. (2018). Towards better understanding of gradient-based attribution methods for Deep Neural Networks. Paper presented at the ICLR. Angelov, P. P., Soares, E. A., Jiang, R., Arnold, N. I., & Atkinson, P. M. (2021). Explainable artificial intelligence: an analytical review. WIREs Data Mining and Knowledge Discovery, 11(5), e1424. doi:https://doi.org/10.1002/widm.1424 Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1983). Classification and Regression Trees. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. J. Artif. Int. Res., 16(1), 321–357. Cheeger, J. (1969). A lower bound for the smallest eigenvalue of the Laplacian. Cox, D. R. (1958). The Regression Analysis of Binary Sequences. Journal of the royal statistical society series b-methodological, 20, 215-232. Donath, W. E., & Hoffman, A. J. (1972). Algorithms for partitioning graphs and computer logic based on eigenvectors of connection matrices. IBM Technical Disclosure Bulletin, 15(3), 938-944. Doran, J. (1967). Book Review. Experiments in Induction Earl B. Hunt, Janet Marin, and Phillip J. Stone , 1966 ; 247. (New York and London : Academic Press , 76s.). The Computer Journal, 10, 299-299. doi:10.1093/comjnl/10.3.299 Forgy, E. W. (1965). Cluster analysis of multivariate data : efficiency versus interpretability of classifications. Biometrics, 21, 768-769. Ghorbani, A., Wexler, J., Zou, J., & Kim, B. (2019). Towards automatic concept-based explanations. In Proceedings of the 33rd International Conference on Neural Information Processing Systems (pp. Article 832): Curran Associates Inc. Ho, T. K. (1995). Random decision forests. Paper presented at the Proceedings of the Third International Conference on Document Analysis and Recognition (Volume 1) - Volume 1. Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1254-1259. doi:10.1109/34.730558 Kazhdan, D., Dimanov, B., Jamnik, M., Lio’, P., & Weller, A. (2020). Now You See Me (CME): Concept-based Model Extraction. ArXiv, abs/2010.13233. Kim, B., Wattenberg, M., Gilmer, J., Cai, C. J., Wexler, J., Viégas, F. B., & Sayres, R. (2018). Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV). http://proceedings.mlr.press/v80/kim18d.html Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Commun. ACM, 60(6), 84–90. doi:10.1145/3065386 Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. doi:10.1109/5.726791 Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60(2), 91-110. doi:10.1023/B:VISI.0000029664.99615.94 Opitz, D., & Maclin, R. (1999). Popular Ensemble Methods: An Empirical Study. 11. doi:10.1613/jair.614 Petsiuk, V., Das, A., & Saenko, K. (2018). RISE: Randomized Input Sampling for Explanation of Black-box Models. Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. CoRR, abs/1312.6034. Smilkov, D., Thorat, N., Kim, B., Viégas, F., & Wattenberg, M. (2017). SmoothGrad: removing noise by adding noise. Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic attribution for deep networks. Paper presented at the Proceedings of the 34th International Conference on Machine Learning - Volume 70, Sydney, NSW, Australia. Turek, M. (2018). Explainable artificial intelligence (XAI). Defense Advanced Research Projects Agency Retrieved from https://www.darpa.mil/program/explainable-artificial-intelligence Ward, J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58(301), 236-244. doi:10.1080/01621459.1963.10500845 Zhang, T., Ramakrishnan, R., & Livny, M. (1996). BIRCH: an efficient data clustering method for very large databases. SIGMOD Rec., 25(2), 103–114. doi:10.1145/235968.233324 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85006 | - |
dc.description.abstract | 自類神經網路的模型困境有所突破、重受學術、產業界青睞以來,影像辨識的技術亦突飛猛進,尤其是搭配大幅提昇的電腦硬體運算能力,常使用深度神經網路模型來進行圖像的分類或辨識。深度神經網路擅長從資料中找出錯綜複雜的規律並自動萃取隱藏特徵。因此得以攻克以前難以完成的預測任務,然而深度神經網路常被視為難以理解的黑盒子,模型訓練完成後無法知悉其內部運作機制,倘若模型運作機制與人類認知產生落差、甚至相左,在特定應用領域上恐難以協助決策、甚至造成危害,縱然有高度的預測效果,也因其不可解釋的特質而降低了實用性。 針對圖像分類器的解析,現有主流解釋性方法多聚焦在像素層級的解釋,本研究發展基於概念區塊的解釋性框架,其特色是萃取之概念能夠維持在圖像相近區域,並建立以概念作為特徵的可自釋模型來逼近黑盒子,最後綜合不同預測類別的概念重要性排序,檢測影像分類器的推論規則是否合乎人類的判斷邏輯,進而增加實務採用深度神經網路技術的信心。透過實例驗證,本研究提出的概念萃取符合直覺,並能有效解釋圖像分類結果。 | zh_TW |
dc.description.abstract | As the model limitation of Artificial Neural Networks (ANNs) has been broken through, AI techniques are back to the center stage again for academics and industries. The capability of image classification has also advanced significantly, and many applications are realized especially thanks to the greatly improved computing power. Deep Neural Nets (DNNs) are good at finding intricate rules/patterns from data and automatically extracting hidden features. The prediction tasks which were difficult to solve can be overcome quickly now. However, DNNs are often regarded as incomprehensible black boxes which cannot be unfolded once the model is trained. If its internal inference mechanism deviates or even contradicts human cognition, it may be difficult to support decision-making in specific application fields. For the explanation decomposition of image classifiers, the mainstream methods focus on the interpretation at the pixel level. Significant pixels, which may spread sparsely, are then aggregated to explain the model. This thesis develops an explaining framework based on the image concept, which is a block of neighboring pixels once extracted. A concept-based and thus explainable model is built to approximate the black box model. Concept importance ranking across various predicting classes is then investigated and compared with the intuitive inference logic. Hopefully, the creditability of adopting DNN-based image classification can be increased. Through the proper case study, the proposed method can extract intuitive concepts as well as explain the black-box model logically. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:37:43Z (GMT). No. of bitstreams: 1 U0001-1708202219394100.pdf: 4402179 bytes, checksum: 7a8a352566f133348a564b3868039dc6 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 致謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究架構 4 第二章 文獻探討 5 2.1 圖像分類模型 5 2.1.1 深度神經網路 5 2.1.2 機器學習模型 8 2.2 人工智慧可釋性發展 9 2.3 模型歸納 11 2.3.1 基於梯度 11 2.3.2 基於遮罩 14 2.4 基於概念分割之可釋性模型 16 第三章 圖像分類器可釋性研究 20 3.1 圖像概念萃取 23 3.2 基於概念之可自釋分類模型 25 3.2.1 圖像概念分數 25 3.2.2 基於概念之分類模型 28 第四章 案例研討 29 4.1 資料集介紹 29 4.2 卷積神經網路 31 4.2 萃取概念之分析 32 4.3 可自釋模型的建立 37 4.3.1 建構圖像概念分數 37 4.3.2 建立基於概念的分類器 39 4.3.3 傳統文獻ACE萃取概念效果比較 47 4.3.4 訓練資料集大小對預測效果影響 52 第五章 結論與未來研究建議 53 5.1 研究貢獻 53 5.2 未來研究建議 54 參考文獻列表 56 | - |
dc.language.iso | zh_TW | - |
dc.title | 利用圖像概念分割之影像分類器可釋性萃取 | zh_TW |
dc.title | Explainability Extraction of Image Classification based on Concept Segmentation | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 楊朝龍;楊惟婷 | zh_TW |
dc.contributor.oralexamcommittee | Chao-Lung Yang;Wei-Ting Yang | en |
dc.subject.keyword | 深度神經網路,圖像分類器,模型可釋性,影像概念萃取, | zh_TW |
dc.subject.keyword | Image Classification,Deep Neural Net,Explainable AI (XAI),Image Concept Extraction, | en |
dc.relation.page | 58 | - |
dc.identifier.doi | 10.6342/NTU202202524 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2022-08-19 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工業工程學研究所 | - |
dc.date.embargo-lift | 2027-08-17 | - |
顯示於系所單位: | 工業工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-110-2.pdf 目前未授權公開取用 | 4.3 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。