請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85003完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 姜至剛(Chih-Kang Chiang) | |
| dc.contributor.author | Chia-Ling Hsu | en |
| dc.contributor.author | 徐嘉羚 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:37:31Z | - |
| dc.date.copyright | 2022-10-14 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-18 | |
| dc.identifier.citation | 1. Howard, E.E., et al., Divergent roles of inflammation in skeletal muscle recovery from injury. Frontiers in Physiology, 2020. 11: p. 87. 2. Huard, J., Y. Li, and F.H. Fu, Muscle injuries and repair: current trends in research. Journal of Bone & Joint Surgery, 2002. 84(5): p. 822-832. 3. Bentzinger, C.F., Y.X. Wang, and M.A. Rudnicki, Building muscle: molecular regulation of myogenesis. Cold Spring Harbor perspectives in biology, 2012. 4(2): p. a008342. 4. Jang, Y.-N. and E.J. Baik, JAK-STAT pathway and myogenic differentiation. Jak-stat, 2013. 2(2): p. e23282. 5. Enwere, E.K., et al., Role of the TWEAK-Fn14-cIAP1-NF-κB signaling axis in the regulation of myogenesis and muscle homeostasis. Frontiers in immunology, 2014. 5: p. 34. 6. Rupert, J.E., D.H. Jengelley, and T.A. Zimmers, In vitro, in vivo, and in silico methods for assessment of muscle size and muscle growth regulation. Shock (Augusta, Ga.), 2020. 53(5): p. 605. 7. Mueckler, M., Family of glucose-transporter genes: implications for glucose homeostasis and diabetes. Diabetes, 1990. 39(1): p. 6-11. 8. Evans, P.L., et al., Regulation of skeletal muscle glucose transport and glucose metabolism by exercise training. Nutrients, 2019. 11(10): p. 2432. 9. Augustin, R. and E. Mayoux, Mammalian sugar transporters, in Glucose homeostasis. 2014, IntechOpen. 10. Scheepers, A., H.-G. Joost, and A. Schurmann, The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. Journal of parenteral and enteral nutrition, 2004. 28(5): p. 364-371. 11. Vargas, E., V. Podder, and C. Sepulveda, Physiology, Glucose Transporter Type 4. 2019. 12. Mangnall, D., C. Bruce, and R.B. Fraser, Insulin-stimulated glucose uptake in C2C12 myoblasts. 1993, Portland Press Ltd. 13. Al-Khalili, L., et al., Insulin action in cultured human skeletal muscle cells during differentiation: assessment of cell surface GLUT4 and GLUT1 content. Cellular and Molecular Life Sciences CMLS, 2003. 60(5): p. 991-998. 14. Winder, W., Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle. Journal of applied physiology, 2001. 91(3): p. 1017-1028. 15. Leto, D. and A.R. Saltiel, Regulation of glucose transport by insulin: traffic control of GLUT4. Nature reviews Molecular cell biology, 2012. 13(6): p. 383-396. 16. Bodine, S.C. and L.M. Baehr, Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. American Journal of Physiology-Endocrinology and Metabolism, 2014. 307(6): p. E469-E484. 17. Fanzani, A., et al., Molecular and cellular mechanisms of skeletal muscle atrophy: an update. Journal of cachexia, sarcopenia and muscle, 2012. 3(3): p. 163-179. 18. Yin, L., et al., Skeletal muscle atrophy: From mechanisms to treatments. Pharmacological Research, 2021. 172: p. 105807. 19. Mitch, W.E. and A.L. Goldberg, Mechanisms of muscle wasting—the role of the ubiquitin–proteasome pathway. New England journal of medicine, 1996. 335(25): p. 1897-1905. 20. Kang, S.-H., et al., Forkhead box O3 plays a role in skeletal muscle atrophy through expression of E3 ubiquitin ligases MuRF-1 and atrogin-1 in Cushing’s syndrome. American Journal of Physiology-Endocrinology and Metabolism, 2017. 312(6): p. E495-E507. 21. Dent, E., et al., International clinical practice guidelines for sarcopenia (ICFSR): screening, diagnosis and management. The journal of nutrition, health & aging, 2018. 22(10): p. 1148-1161. 22. Chen, L.-K., et al., Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. Journal of the American Medical Directors Association, 2014. 15(2): p. 95-101. 23. Chen, L.-K., et al., Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. Journal of the American Medical Directors Association, 2020. 21(3): p. 300-307. e2. 24. Laaksonen, D., et al., Epidemiology and treatment of the metabolic syndrome. Annals of Medicine, 2004. 36(5): p. 332-346. 25. Polyzos, S.A. and A.N. Margioris, Sarcopenic obesity. Hormones, 2018. 17(3): p. 321-331. 26. Stenholm, S., et al., Sarcopenic obesity-definition, etiology and consequences. Current opinion in clinical nutrition and metabolic care, 2008. 11(6): p. 693. 27. Lee, P.G. and M. Tan, Diabetes mellitus and sarcopenia, in Diabetes Mellitus. 2020, Elsevier. p. 185-207. 28. Inaba, M., Musculoskeletal Disease Associated with Diabetes Mellitus. 2016. 29. Clegg, A., et al., Frailty in elderly people. The lancet, 2013. 381(9868): p. 752-762. 30. Fried, L.P., et al., Frailty in older adults: evidence for a phenotype. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 2001. 56(3): p. M146-M157. 31. Muscedere, J., The Need to Implement Frailty in the International Classification of Disease (ICD). 2020, Springer. p. 2-3. 32. Chao, C.-T., J. Wang, and K.-L. Chien, Both pre-frailty and frailty increase healthcare utilization and adverse health outcomes in patients with type 2 diabetes mellitus. Cardiovascular diabetology, 2018. 17(1): p. 1-13. 33. Dent, E., et al., Physical frailty: ICFSR international clinical practice guidelines for identification and management. The journal of nutrition, health & aging, 2019. 23(9): p. 771-787. 34. Cruz-Jentoft, A.J., et al., Sarcopenia: European consensus on definition and diagnosisReport of the European Working Group on Sarcopenia in Older PeopleA. J. Cruz-Gentoft et al. Age and ageing, 2010. 39(4): p. 412-423. 35. Nascimento, C., et al., Sarcopenia, frailty and their prevention by exercise. Free Radical Biology and Medicine, 2019. 132: p. 42-49. 36. Sasaki, T., Sarcopenia, frailty circle and treatment with sodium–glucose cotransporter 2 inhibitors. Journal of Diabetes Investigation, 2019. 10(2): p. 193. 37. Freeman, J.S., Review of insulin-dependent and insulin-independent agents for treating patients with type 2 diabetes mellitus and potential role for sodium-glucose co-transporter 2 inhibitors. Postgraduate Medicine, 2013. 125(3): p. 214-226. 38. Seufert, J., SGLT2 inhibitors–an insulin-independent therapeutic approach for treatment of type 2 diabetes: focus on canagliflozin. Diabetes, metabolic syndrome and obesity: targets and therapy, 2015. 8: p. 543. 39. Fujita, Y. and N. Inagaki, Renal sodium glucose cotransporter 2 inhibitors as a novel therapeutic approach to treatment of type 2 diabetes: clinical data and mechanism of action. Journal of diabetes investigation, 2014. 5(3): p. 265-275. 40. Heerspink, H.J., et al., Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation, 2016. 134(10): p. 752-772. 41. Nauck, M.A., Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug design, development and therapy, 2014. 8: p. 1335. 42. Perkovic, V., et al., Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. New England Journal of Medicine, 2019. 380(24): p. 2295-2306. 43. Vasquez-Rios, G. and G.N. Nadkarni, SGLT2 inhibitors: emerging roles in the protection against cardiovascular and kidney disease among diabetic patients. International Journal of Nephrology and Renovascular Disease, 2020. 13: p. 281. 44. https://www.fda.gov.tw/TC/index.aspx. FDA approval of SGLT2 inhibitors for type II diabetes in Taiwan. 2022. 45. Yasuda, M., et al., Sodium–glucose cotransporter 2 inhibitor and sarcopenia in a lean elderly adult with type 2 diabetes: A case report. Journal of diabetes investigation, 2020. 11(3): p. 745-747. 46. Kinoshita, T., et al., There is a close association between the recovery of liver injury and glycemic control after SGLT2 inhibitor treatment in Japanese subjects with type 2 diabetes: a retrospective clinical study. Diabetes Therapy, 2018. 9(4): p. 1569-1580. 47. Sasaki, T., M. Sugawara, and M. Fukuda, Sodium–glucose cotransporter 2 inhibitor‐induced changes in body composition and simultaneous changes in metabolic profile: 52‐week prospective LIGHT (Luseogliflozin: the Components of Weight Loss in Japanese Patients with Type 2 Diabetes Mellitus) Study. Journal of diabetes investigation, 2019. 10(1): p. 108-117. 48. Inoue, H., et al., Ipragliflozin, a sodium–glucose cotransporter 2 inhibitor, reduces bodyweight and fat mass, but not muscle mass, in Japanese type 2 diabetes patients treated with insulin: A randomized clinical trial. Journal of diabetes investigation, 2019. 10(4): p. 1012-1021. 49. Tsurutani, Y., et al., Comparative study of the effects of ipragliflozin and sitagliptin on multiple metabolic variables in Japanese patients with type 2 diabetes: a multicentre, randomized, prospective, open‐label, active‐controlled study. Diabetes, Obesity and Metabolism, 2018. 20(11): p. 2675-2679. 50. Yabe, D., et al., Short-term impacts of sodium/glucose co-transporter 2 inhibitors in Japanese clinical practice: considerations for their appropriate use to avoid serious adverse events. 2015, Taylor & Francis. p. 795-800. 51. Bolinder, J., et al., Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes, Obesity and Metabolism, 2014. 16(2): p. 159-169. 52. Schork, A., et al., Effect of SGLT2 inhibitors on body composition, fluid status and renin–angiotensin–aldosterone system in type 2 diabetes: a prospective study using bioimpedance spectroscopy. Cardiovascular diabetology, 2019. 18(1): p. 1-12. 53. Sugiyama, S., et al., Dapagliflozin reduces fat mass without affecting muscle mass in type 2 diabetes. Journal of atherosclerosis and thrombosis, 2018. 25(6): p. 467-476. 54. Ferrannini, E. and A. Solini, SGLT2 inhibition in diabetes mellitus: rationale and clinical prospects. Nature Reviews Endocrinology, 2012. 8(8): p. 495-502. 55. Bando, H., Perspectives on Sarcopenia and Protein Intake in Aged and Diabetic Patients. Journal of Health Care and Research, 2021. 2(2): p. 122. 56. Umegaki, H., Sarcopenia and frailty in older patients with diabetes mellitus. Geriatrics & gerontology international, 2016. 16(3): p. 293-299. 57. Nomura, S., et al., Discovery of canagliflozin, a novel C-glucoside with thiophene ring, as sodium-dependent glucose cotransporter 2 inhibitor for the treatment of type 2 diabetes mellitus. Journal of medicinal chemistry, 2010. 53(17): p. 6355-6360. 58. Kuriyama, C., et al., Analysis of the effect of canagliflozin on renal glucose reabsorption and progression of hyperglycemia in zucker diabetic Fatty rats. Journal of Pharmacology and Experimental Therapeutics, 2014. 351(2): p. 423-431. 59. Grempler, R., et al., Empagliflozin, a novel selective sodium glucose cotransporter‐2 (SGLT‐2) inhibitor: characterisation and comparison with other SGLT‐2 inhibitors. Diabetes, Obesity and Metabolism, 2012. 14(1): p. 83-90. 60. Han, S., et al., Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes, 2008. 57(6): p. 1723-1729. 61. Wright, E.M., D.D. Loo, and B.A. Hirayama, Biology of human sodium glucose transporters. Physiological reviews, 2011. 91(2): p. 733-794. 62. Sha, S., et al., Pharmacodynamic differences between canagliflozin and dapagliflozin: results of a randomized, double‐blind, crossover study. Diabetes, Obesity and Metabolism, 2015. 17(2): p. 188-197. 63. Umino, H., et al., High basolateral glucose increases sodium-glucose cotransporter 2 and reduces sirtuin-1 in renal tubules through glucose transporter-2 detection. Scientific reports, 2018. 8(1): p. 1-13. 64. Kusakabe, T., et al., Differential effects of sodium-glucose cotransporter 2 inhibitor and low-carbohydrate diet on body composition and metabolic profile in obese diabetic db/db mice. BMJ Open Diabetes Research and Care, 2020. 8(1): p. e001303. 65. Hoeben, E., et al., Population pharmacokinetic modeling of canagliflozin in healthy volunteers and patients with type 2 diabetes mellitus. Clinical pharmacokinetics, 2016. 55(2): p. 209-223. 66. Devineni, D., et al., Pharmacokinetics and pharmacodynamics of once-and twice-daily multiple-doses of canagliflozin, a selective inhibitor of sodium glucose co-transporter 2, in healthy participants. International journal of clinical pharmacology and therapeutics, 2015. 53(6): p. 438-446. 67. FARXIGA® (dapagliflozin) [package insert]. 2014; FARXIGA® (dapagliflozin) [package insert].]. 68. Kasichayanula, S., et al., Pharmacokinetics and pharmacodynamics of dapagliflozin, a novel selective inhibitor of sodium–glucose co‐transporter type 2, in Japanese subjects without and with type 2 diabetes mellitus. Diabetes, Obesity and Metabolism, 2011. 13(4): p. 357-365. 69. Food, U., Canagliflozin:Drug Administration Center for Drug Evaluation and Research. Application Number 204042Orig1s000: summary review [Internet]. 2017. 70. Liang, Y., et al., Effect of canagliflozin on renal threshold for glucose, glycemia, and body weight in normal and diabetic animal models. PloS one, 2012. 7(2): p. e30555. 71. Chiu, H.C., et al., Preventing muscle wasting by osteoporosis drug alendronate in vitro and in myopathy models via sirtuin‐3 down‐regulation. Journal of cachexia, sarcopenia and muscle, 2018. 9(3): p. 585-602. 72. Dayal, A., et al., The Ca2+ influx through the mammalian skeletal muscle dihydropyridine receptor is irrelevant for muscle performance. Nature communications, 2017. 8(1): p. 1-14. 73. Haschek, W.M., et al., Haschek and Rousseaux's handbook of toxicologic pathology. 2013: Academic Press. 74. Greaves, P., Cardiovascular System in Histopathology of Preclinical Toxicity Studies. 2007, Elsevier, Amsterdam. 75. Mula, J., et al., Automated image analysis of skeletal muscle fiber cross-sectional area. Journal of Applied Physiology, 2013. 114(1): p. 148-155. 76. Cochran, W.G. and D.B. Rubin, Controlling bias in observational studies: A review. Sankhyā: The Indian Journal of Statistics, Series A, 1973: p. 417-446. 77. Chen, J., et al., Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members. Diabetes Therapy, 2010. 1(2): p. 57-92. 78. Villani, L.A., et al., The diabetes medication Canagliflozin reduces cancer cell proliferation by inhibiting mitochondrial complex-I supported respiration. Molecular metabolism, 2016. 5(10): p. 1048-1056. 79. Behnammanesh, G., et al., Canagliflozin inhibits vascular smooth muscle cell proliferation and migration: Role of heme oxygenase-1. Redox biology, 2020. 32: p. 101527. 80. Ighodaro, O. and O. Akinloye, First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria journal of medicine, 2018. 54(4): p. 287-293. 81. Abdelhafiz, A.H., D. Emmerton, and A.J. Sinclair, Impact of frailty metabolic phenotypes on the management of older people with type 2 diabetes mellitus. Geriatrics & Gerontology International, 2021. 21(8): p. 614-622. 82. Mesinovic, J., et al., Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes, metabolic syndrome and obesity: targets and therapy, 2019. 12: p. 1057. 83. Lautaoja, J.H., et al., Differentiation of murine C2C12 myoblasts strongly reduces the effects of myostatin on intracellular signaling. Biomolecules, 2020. 10(5): p. 695. 84. Wong, C.Y., H. Al-Salami, and C.R. Dass, C2C12 cell model: its role in understanding of insulin resistance at the molecular level and pharmaceutical development at the preclinical stage. Journal of Pharmacy and Pharmacology, 2020. 72(12): p. 1667-1693. 85. Carter, S. and T.P. Solomon, In vitro experimental models for examining the skeletal muscle cell biology of exercise: the possibilities, challenges and future developments. Pflügers Archiv-European Journal of Physiology, 2019. 471(3): p. 413-429. 86. Tsakiridis, T., et al., 69P The diabetes drug canagliflozin sensitizes non-small cell lung cancer (NSCLC) to radiotherapy and chemotherapy. Journal of Thoracic Oncology, 2018. 13(4): p. S37. 87. Yagi, T., et al., 166-LB: Canagliflozin but Not Empagliflozin Activates AMPK and Suppresses Colon Cancer Cell Growth. Diabetes, 2019. 68(Supplement_1). 88. Lv, X.-h., et al., Anti-diabetic drug canagliflozin hinders skeletal muscle regeneration in mice. Acta Pharmacologica Sinica, 2022: p. 1-15. 89. Hawley, S.A., et al., The Na+/glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes, 2016. 65(9): p. 2784-2794. 90. Polidori, D., et al., How strongly does appetite counter weight loss? Quantification of the feedback control of human energy intake. Obesity, 2016. 24(11): p. 2289-2295. 91. McMillin, S.M., M.L. Pham, and C.H. Sherrill, Effects of sodium-glucose cotransporter-2 inhibitors on appetite markers in patients with type 2 diabetes mellitus. Nutrition, Metabolism and Cardiovascular Diseases, 2021. 92. Horie, I., et al., Increased sugar intake as a form of compensatory hyperphagia in patients with type 2 diabetes under dapagliflozin treatment. diabetes research and clinical practice, 2018. 135: p. 178-184. 93. Bertran, E., et al., Does dapagliflozin affect energy intake and appetite? A randomized, controlled exploratory study in healthy subjects. Clinical pharmacology in drug development, 2019. 8(1): p. 119-125. 94. Yang, X., et al., Inhibition of the sodium–glucose co‐transporter SGLT2 by canagliflozin ameliorates diet‐induced obesity by increasing intra‐adipose sympathetic innervation. British Journal of Pharmacology, 2021. 178(8): p. 1756-1771. 95. Xu, L., et al., SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMedicine, 2017. 20: p. 137-149. 96. Wang, B., P. Charukeshi Chandrasekera, and J. J Pippin, Leptin-and leptin receptor-deficient rodent models: relevance for human type 2 diabetes. Current diabetes reviews, 2014. 10(2): p. 131-145. 97. Skowronski, A.A., et al., Energy homeostasis in leptin deficient Lepob/ob mice. PloS one, 2017. 12(12): p. e0189784. 98. Wauman, J., L. Zabeau, and J. Tavernier, The leptin receptor complex: heavier than expected? Frontiers in endocrinology, 2017. 8: p. 30. 99. Otsuka, H., et al., Differential effect of canagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, on slow and fast skeletal muscles from nondiabetic mice. Biochemical Journal, 2022. 100. Ferrannini, E., et al., Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. The Journal of clinical investigation, 2014. 124(2): p. 499-508. 101. Merovci, A., et al., Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. The Journal of clinical investigation, 2014. 124(2): p. 509-514. 102. Frontera, W.R. and J. Ochala, Skeletal muscle: a brief review of structure and function. Calcified tissue international, 2015. 96(3): p. 183-195. 103. Yoon, S.-J. and K.-i. Kim, Frailty and disability in diabetes. Annals of geriatric medicine and research, 2019. 23(4): p. 165. 104. Rådholm, K., et al., Canagliflozin and heart failure in type 2 diabetes mellitus: results from the CANVAS program. Circulation, 2018. 138(5): p. 458-468. 105. Spertus, J.A., et al., The SGLT2 inhibitor canagliflozin in heart failure: the CHIEF-HF remote, patient-centered randomized trial. Nature medicine, 2022. 28(4): p. 809-813. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85003 | - |
| dc.description.abstract | 糖尿病的治療重點對於如何預防其他相關慢性併發症在臨床上也相當被重視。SGLT2抑制劑目前是第二型糖尿病藥物,其藥理機轉透過抑制腎臟近曲小管SGLT2運輸蛋白來降低葡萄糖的再吸收,使葡萄糖經由尿液的排泄量增加。肌少症除了在肌肉功能下降外,同時會伴隨身體活動的減少,使跌倒與骨折的風險增加,進而導致衰弱症的發生。然而現今探討使用SGLT2抑制劑患者與衰弱症或肌少症關係之文獻仍缺乏。因此,本研究目的欲探討使用SGLT2抑制劑的患者是否會增加罹患衰弱症或肌少症的風險。研究方法可分為三部分──細胞實驗、動物實驗,及臺大體系醫療整合資料庫資料作為臨床數據的回溯性世代研究。首先,以C2C12小鼠骨骼肌母細胞在臨床相關濃度下分析canagliflozin對骨骼肌的直接影響作用。我們藉由MTS assay以及trypan blue exclusion assay發現高濃度下的canagliflozin 50μM會抑制骨骼肌細胞增生。接著我們觀察SGLT2抑制劑是否會影響肌肉生成的過程,並發現第五天時處理canagliflozin組別MHC的表現有劑量依賴性的趨勢,進一步發現在臨床濃度下的canagliflozin跟dapagliflozin皆會使 Akt 蛋白表現顯著增加,而不影響 GLUT4及SGLT2的蛋白表現。動物實驗中,我們發現在第二型糖尿病疾病模式BKS.Cg-m +/+ Leprdb /J小鼠以每日管餵 canagliflozin後,OGTT以及PITT實驗中針對曲線下面積葡萄糖總量有顯著差異地下降,顯示canagliflozin主要透過改善葡萄糖的耐受性達到控制血糖的效果,同時發現餵食 8 週後的非糖尿病小鼠握力顯著大於控制組,但疾病用藥組中握力並未改變,顯示SGLT2抑制劑會提升非疾病組別的最大力量,此藥物可以改善疾病組的肌肉表現。藥物並不影響骨骼肌中Akt的表現,對於骨骼肌蛋白主要合成途徑並無顯著的影響,但經由增加磷酸化Foxo3a的表現來調控肌肉降解的相關途徑,顯示canagliflozin會藉由調控轉錄後修飾途徑進而減少骨骼肌萎縮之表現。最後,我們分析國立臺灣大學醫學院附設醫院門診臨床診斷第二型糖尿病且有服用SGLT2抑制劑的患者及對照組,探討其與肌少症及衰弱症之間的關係。我們發現,在糖尿病組別中使用SGLT2抑制劑相較於控制組,發生衰弱前期和骨骼肌相關疾病的風險較高。綜合上述,本篇研究提供臨床上使用SGLT2抑制劑對於骨骼肌影響之藥物安全性的觀點,針對第二型糖尿病患者建議須小心使用 SGLT2 抑制劑。 | zh_TW |
| dc.description.abstract | To date, type II diabetes treatment is important, since it can prevent chronic complications and acute complications, such as hyperosmolar hyperglycemic state. Currently, sodium-glucose cotransporter-2 inhibitors are a new type of drug therapy for type II diabetes. The mechanism of these drugs is to inhibit the reabsorption of filtered sugar and increase renal glucose excretion for blood sugar control. However, there are some controversies and concerns about whether SGLT2 inhibitors would cause sarcopenia or frailty in diabetic patients. Rare research has focused on the effects of SGLT2 inhibitors on skeletal muscle. Therefore, the purpose of this study is to investigate whether patients on SGLT2 inhibitors have an increased risk of sarcopenia or frailty. The methods were divided into three parts: in vitro, in vivo and a retrospective cohort study based on National Taiwan University Hospital-integrated Medical Database .C2C12 mouse skeletal myoblasts and myotubes were used to analyze the direct effect of canagliflozin on skeletal muscle at clinically relevant concentrations. Eight week old male BKS.Cgm+ +/+ Lepr db/J type II diabetic mice and the corresponding nondiabetic mice were fed 30 mg/kg canagliflozin or vehicle by daily oral gavage for eight weeks. We found that there was a significant decrease in the total amount of glucose for the area under the curve, indicating that canagliflozin controls blood sugar by improving glucose tolerance. In terms of muscle strength, canagliflozin increased maximal strength in the nondiabetic mice. In addition, for muscle performance, we found that canagliflozin could improve muscle performance in the diabetic mice. Next, we observed that canagliflozin did not affect the expression of Akt in skeletal muscle but regulated pathways of muscle degradation by increasing the expression of phosphorylated Foxo3a, which reduced the atrophy related transcription factors entering the nucleus. Canagliflozin reduced skeletal muscle atrophy by regulating post-translational modification. Finally, we included diabetic patients from the National Taiwan University Hospital and controls to examine the relationship between SGLT2 inhibitors and sarcopenia and frailty. SGLT2 inhibitors using in the diabetes population was associated with a higher risk of pre-frailty and skeletal muscle-related diseases compared with the control group. In conclusion, our study provided insight into the drug safety of canagliflozin on skeletal muscle. Patients with type II diabetes might use SGLT2 inhibitors with caution due to the concern about sarcopenia-related diseases. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:37:31Z (GMT). No. of bitstreams: 1 U0001-1508202216322600.pdf: 7978106 bytes, checksum: 95be9506e825a320582db1a11729260d (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 i 致謝 ii 中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF ABBREVIATIONS xi Chapter 1 Introduction 1 1.1 Skeletal muscle 1 1.1.1 Myogenesis 1 1.1.2 Glucose Transporters in skeletal muscles 2 1.1.3 Atrophy of skeletal muscle 4 1.2 Sarcopenia 5 1.2.1 Type II diabetes mellitus and sarcopenic obesity 7 1.3 Frailty 9 1.3.1 Differences between sarcopenia and frailty 11 1.4 Type II diabetes mellitus 12 1.4.1 Sodium–glucose cotransporter-2 inhibitors 12 1.4.2 Controversy in the relationship between SGLT2 inhibitors and sarcopenia or frailty 14 1.4.3 Concerns about frailty as a complication during SGLT2 inhibitor treatment 16 1.4.4 Canagliflozin: off target effects and pharmacological action 16 1.5 Aims 18 Chapter 2 Materials and Methods 19 2.1 Material 19 2.2 Cell culture 20 2.3 Animal experiments 21 2.4 Dose justification 23 2.5 Assessment of cell proliferation and cell death 23 2.5.1 MTS assay 23 2.5.2 Trypan blue exclusion assay 24 2.6 Glucose tolerance assessment 24 2.6.1 Oral Glucose Tolerance Test (OGTT) 24 2.6.2 Intraperitoneal Insulin Tolerance Test (PITT) 25 2.7 Muscle strength assessment 25 2.7.1 Grip strength test 25 2.7.2 Wire hanging test 26 2.8 Muscle performance assessment 26 2.8.1 The rotarod test 26 2.9 Morphological analysis of skeletal muscle 27 2.9.1 Hematoxylin and eosin (H&E) staining 27 2.9.2 Cross-sectional area analysis 28 2.10 Protein extraction and western blotting 29 2.11 Membrane protein extraction 30 2.12 Clinical study: patient population, data sources and ethical approval 30 2.13 Cohort design 31 2.14 Outcomes 34 2.15 Statistical analysis 34 Chapter 3 Results 36 3.1 Canagliflozin rather than dapagliflozin inhibits myoblast proliferation at high concentration 36 3.2 SGLT2 inhibitors accelerate myoblast differentiation in a dose-dependent manner 36 3.3 SGLT2 inhibitors activate Akt signaling during C2C12 myogenesis in vitro 37 3.4 Characteristics of the type II diabetic mouse model without and with SGLT2 inhibitor treatment 38 3.5 SGLT2 inhibitor improves glucose tolerance in vivo 39 3.6 SGLT2 inhibitor improves the function of skeletal muscle in vivo 40 3.7 Canagliflozin do not change skeletal muscle weight and the expression of MHC in vivo 42 3.8 Canagliflozin affects atrophy-related markers in skeletal muscle tissue in vivo 42 3.9 Canagliflozin do not affect the expression of Akt in both red and white skeletal muscle 43 3.10 Canagliflozin do not significantly affect the expression of SOD1 and catalase in both red and white skeletal muscle 44 3.11 Histopathological assessment in vivo 44 3.12 Clinical results using the National Taiwan University Hospital data 45 3.13 Comparison of Kaplan–Meier survival curves between control and SGLT2i group 46 3.14 Cox proportional hazard modeling analysis 47 3.15 Subgroup analysis for canagliflozin 48 Chapter 4 Discussion 50 Chapter 5 Conclusion 59 Chapter 6 Figures 60 Figure 1 60 Figure 2 62 Figure 3 65 Figure 4 67 Figure 5 71 Figure 6 74 Figure 7 76 Figure 8 78 Figure 9 80 Figure 10 81 Figure 11 83 Figure 12 85 Figure 13 87 Figure 14 91 Figure 15 95 Figure 16 96 Figure 17 99 Figure 18 100 Figure 19 101 Figure 20 104 Chapter 7 Tables 108 Table 1 108 Table 2 109 Table 3 110 Table 4 111 Table 5 112 Table 6 113 Table 7 114 Table 8 115 Table 9 116 Table 10 117 Table 11 118 Chapter 8 References 119 Appendix 136 | |
| dc.language.iso | en | |
| dc.subject | 肌少症 | zh_TW |
| dc.subject | 衰弱症 | zh_TW |
| dc.subject | 骨骼肌 | zh_TW |
| dc.subject | 鈉-葡萄糖轉運蛋白-2 抑制劑 | zh_TW |
| dc.subject | 卡格列淨 | zh_TW |
| dc.subject | frailty | en |
| dc.subject | canagliflozin | en |
| dc.subject | sodium-glucose cotransporter-2 inhibitor | en |
| dc.subject | skeletal muscle | en |
| dc.subject | sarcopenia | en |
| dc.title | 從體外數據到真實世界數據探討Canagliflozin 第二型鈉-葡萄糖轉運蛋白-2抑制劑對於肌少症相關表型的影響 | zh_TW |
| dc.title | Impact of Canagliflozin, a sodium glucose-cotransporter-2 inhibitor, on sarcopenia-related phenotype from in vitro to real world data | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉興華(Shing-Hwa Liu),吳鎮天(Cheng-Tien Wu),趙家德(Chia-Ter Chao) | |
| dc.subject.keyword | 卡格列淨,鈉-葡萄糖轉運蛋白-2 抑制劑,骨骼肌,肌少症,衰弱症, | zh_TW |
| dc.subject.keyword | canagliflozin,sodium-glucose cotransporter-2 inhibitor,skeletal muscle,sarcopenia,frailty, | en |
| dc.relation.page | 137 | |
| dc.identifier.doi | 10.6342/NTU202202414 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-10-14 | - |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1508202216322600.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
