Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84998
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃偉邦(Wei-Pang Huang)
dc.contributor.authorWon-Jin Jungen
dc.contributor.author鄭元進zh_TW
dc.date.accessioned2023-03-19T22:37:15Z-
dc.date.copyright2022-08-24
dc.date.issued2022
dc.date.submitted2022-08-19
dc.identifier.citationBadadani, M. (2012). Autophagy Mechanism, Regulation, Functions, and Disorder s. ISRN Cell Biology, Volume 2012, 11. Burman, C., & Ktistakis, N. T. (2010). Regulation of autophagy by phosphatidylinositol 3-phosphate. FEBS letters, 584(7), 1302–1312. Casado, C., Yenush, L., Melero, C., Ruiz, M., Serrano, R., Pérez-Valle, J., Ariño, J., & Ramos, J. (2010). Regulation of Trk-dependent potassium transport by the calcineurin pathway involves the Hal5 kinase. FEBS letters, 584(11), 2415–2420. Cebollero, E., & Reggiori, F. (2009). Regulation of autophagy in yeast Saccharomyces cerevisiae. Biochimica et Biophysica Acta, 1793(9), 1413–1421. Cheong, H., Nair, U., Geng, J., & Klionsky, D. J. (2008). The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Molecular biology of the cell, 19(2), 668–681.Cheong, H., Yorimitsu, T., Reggiori, F., Legakis, J. E., Wang, C. W., & Klionsky, D. J. (2005). Atg17 regulates the magnitude of the autophagic response. Molecular biology of the cell, 16(7), 3438–3453. Chew, L. H., Setiaputra, D., Klionsky, D. J., & Yip, C. K. (2013). Structural characterization of the Saccharomyces cerevisiae autophagy regulatory complex Atg17- Atg31-Atg29. Autophagy, 9(10), 1467–1474. Dove, S. K., Piper, R. C., McEwen, R. K., Yu, J. W., King, M. C., Hughes, D. C., Thuring, J., Holmes, A. B., Cooke, F. T., Michell, R. H., Parker, P. J., & Lemmon, M. A. (2004). Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. The EMBO journal, 23(9), 1922–1933. Edelheit, O., Hanukoglu, A., & Hanukoglu, I. (2009). Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC biotechnology, 9, 61. Farré, J. C., Vidal, J., & Subramani, S. (2007). A cytoplasm to vacuole targeting pathway in P. pastoris. Autophagy, 3(3), 230–234. Feng, Y., He, D., Yao, Z., & Klionsky, D. J. (2014). The machinery of macroautophagy. Cell research, 24(1), 24–41. Gaber, R. F., Styles, C. A., & Fink, G. R. (1988). TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Molecular and cellular biology, 8(7), 2848–2859. Harding, T. M., Morano, K. A., Scott, S. V., & Klionsky, D. J. (1995). Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. The Journal of cell biology, 131(3), 591–602. He, C., & Klionsky, D. J. (2009). Regulation mechanisms and signaling pathways of autophagy. Annual review of genetics, 43, 67–93. He, C., Song, H., Yorimitsu, T., Monastyrska, I., Yen, W. L., Legakis, J. E., & Klionsky, D. J. (2006). Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast. The Journal of cell biology, 175(6), 925–935. Herman, P. K., Stack, J. H., & Emr, S. D. (1991). A genetic and structural analysis of the yeast Vps15 protein kinase: evidence for a direct role of Vps15p in vacuolar protein delivery. The EMBO journal, 10(13), 4049–4060. Huang, W. P., Scott, S. V., Kim, J., & Klionsky, D. J. (2000). The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autoph agy/Cvt pathways. The Journal of biological chemistry, 275(8), 5845–5851. Hutchins, M. U., & Klionsky, D. J. (2001). Vacuolar localization of oligomeric a lpha-mannosidase requires the cytoplasm to vacuole targeting and autophagy path way components in Saccharomyces cerevisiae. The Journal of biological chemistr y, 276(23), 20491–20498. Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., Mizushima, N., Tanida, I., Kominami, E., Ohsumi, M., Noda, T., & Ohsumi, Y. (2000). A ubiquitin- like system mediates protein lipidation. Nature, 408(6811), 488–492. Itakura, E., & Mizushima, N. (2010). Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy, 6(6), 764–776. Jiang, P., & Mizushima, N. (2014). Autophagy and human diseases. Cell research, 24(1), 69–79. Kabeya, Y., Kamada, Y., Baba, M., Takikawa, H., Sasaki, M., & Ohsumi, Y. (2005). Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Molecular biology of the cell, 16(5), 2544–2553. Kabeya, Y., Noda, N. N., Fujioka, Y., Suzuki, K., Inagaki, F., & Ohsumi, Y. (2009). Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation- induced autophagy in Saccharomyces cerevisiae. Biochemical and biophysical research communications, 389(4), 612–615. Kamada, Y., Funakoshi, T., Shintani, T., Nagano, K., Ohsumi, M., & Ohsumi, Y. (2000). Tor-mediated induction of autophagy via an Apg1 protein kinase complex. The Journal of cell biology, 150(6), 1507–1513. Kametaka, S., Okano, T., Ohsumi, M., & Ohsumi, Y. (1998). Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. The Journal of biological chemistry, 273(35), 22284–22291. Kihara, A., Noda, T., Ishihara, N., & Ohsumi, Y. (2001). Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. The Journal of cell biology, 152(3), 519–530. Kirisako, T., Baba, M., Ishihara, N., Miyazawa, K., Ohsumi, M., Yoshimori, T., Noda, T., & Ohsumi, Y. (1999). Formation process of autophagosome is traced with Apg8/Aut7p in yeast. The Journal of cell biology, 147(2), 435–446. Kissová, I., Salin, B., Schaeffer, J., Bhatia, S., Manon, S., & Camougrand, N. (2 007). Selective and non-selective autophagic degradation of mitochondria in yeast. Autophagy, 3(4), 329–336. Klionsky D. J. (2005). The molecular machinery of autophagy: unanswered questions. Journal of cell science, 118(Pt 1), 7–18. Klionsky D. J. (2007). Monitoring autophagy in yeast: the Pho8Delta60 assay. Methods in molecular biology (Clifton, N.J.), 390, 363–371. Klionsky, D. J., Cueva, R., & Yaver, D. S. (1992). Aminopeptidase I of Sacchar omyces cerevisiae is localized to the vacuole independent of the secretory pathw ay. The Journal of cell biology, 119(2), 287–299. Ko, C. H., & Gaber, R. F. (1991). TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Molecular and cellular biology, 11(8), 4266– 4273. Kotani, T., Kirisako, H., Koizumi, M., Ohsumi, Y., & Nakatogawa, H. (2018). The Atg2- Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation. Proceedings of the National Academy of Sciences of the United States of America, 115(41), 10363–10368. Kuma, A., Mizushima, N., Ishihara, N., & Ohsumi, Y. (2002). Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast.The Journal of biological chemistry, 277(21), 18619–18625. Lang, T., Reiche, S., Straub, M., Bredschneider, M., & Thumm, M. (2000). Autophagy and the cvt pathway both depend on AUT9. Journal of bacteriology, 182(8), 2125–2133. Legakis, J. E., Yen, W. L., & Klionsky, D. J. (2007). A cycling protein complex required for selective autophagy. Autophagy, 3(5), 422–432. Lynch-Day, M. A., & Klionsky, D. J. (2010). The Cvt pathway as a model for selective autophagy. FEBS letters, 584(7), 1359–1366. Mari, M., J. Griffith, E. Rieter, L. Krishnappa, D.J. Klionsky, and F. Reggiori. 2010. An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J. Cell Biol. 190:1005–1022. Matsuura, A., Tsukada, M., Wada, Y., & Ohsumi, Y. (1997). Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene, 192(2), 245–250. Meiling-Wesse, K., Barth, H., & Thumm, M. (2002). Ccz1p/Aut11p/Cvt16p is ess ential for autophagy and the cvt pathway. FEBS letters, 526(1-3), 71–76. Mizumura, K., Choi, A. M., & Ryter, S. W. (2014). Emerging role of selective autophagy in human diseases. Frontiers in pharmacology, 5, 244. Mizushima, N., & Komatsu, M. (2011). Autophagy: renovation of cells and tissues. Cell, 147(4), 728–741. Mizushima, N., Noda, T., Yoshimori, T., Tanaka, Y., Ishii, T., George, M. D., Klionsky, D. J., Ohsumi, M., & Ohsumi, Y. (1998). A protein conjugation system essential for autophagy. Nature, 395(6700), 395–398. Mizushima, N., Yoshimori, T., & Ohsumi, Y. (2011). The role of Atg proteins in autophagosome formation. Annual review of cell and developmental biology, 27, 107– 132. Mulet, J. M., Leube, M. P., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1999). A novel mechanism of ion homeostasis and salt tolerance in yeast: the Hal4 and Hal5 protein kinases modulate the Trk1-Trk2 potassium transporter.Molecular and cellular biology, 19(5), 3328–3337. Nair, U., Thumm, M., Klionsky, D. J., & Krick, R. (2011). GFP-Atg8 protease p rotection as a tool to monitor autophagosome biogenesis. Autophagy, 7(12), 1546 –1550. Nakatogawa H. (2020). Mechanisms governing autophagosome biogenesis.Nature reviews. Molecular cell biology, 21(8), 439–458. Noda, T., Kim, J., Huang, W. P., Baba, M., Tokunaga, C., Ohsumi, Y., & Klionsky, D. J. (2000). Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. The Journal of cell biology, 148(3), 465– 480. Ohashi, Y., & Munro, S. (2010). Membrane delivery to the yeast autophagosome from the Golgi-endosomal system. Molecular biology of the cell, 21(22), 3998–4008. Papinski, D., Schuschnig, M., Reiter, W., Wilhelm, L., Barnes, C. A., Maiolica, A., Hansmann, I., Pfaffenwimmer, T., Kijanska, M., Stoffel, I., Lee, S. S., Brezovich, A., Lou, J. H., Turk, B. E., Aebersold, R., Ammerer, G., Peter, M., & Kraft, C. (2014a). Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase. Molecular cell, 53(3), 471–483. Parzych, K. R., & Klionsky, D. J. (2014). An overview of autophagy: morphology, mechanism, and regulation. Antioxidants & redox signaling, 20(3), 460–473. Primo, C., Ferri-Blázquez, A., Loewith, R., & Yenush, L. (2017). Reciprocal Regulation of Target of Rapamycin Complex 1 and Potassium Accumulation. The Journal of biological chemistry, 292(2), 563–574. Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X., Fasolo, J., Guo, H., Jona, G.,Breitkreutz, A., Sopko, R., McCartney, R. R., Schmidt, M. C., Rachidi, N., Lee, S. J., Mah, A. S., Meng, L., Stark, M. J., Stern, D. F., De Virgilio, C., Tyers, M., ... Snyder, M. (2005). Global analysis of protein phosphorylation in yeast. Nature, 438(7068), 679–684. Pérez-Valle, J., Jenkins, H., Merchan, S., Montiel, V., Ramos, J., Sharma, S., Serrano, R., & Yenush, L. (2007). Key role for intracellular K+ and protein kinases Sat4/Hal4 and Hal5 in the plasma membrane stabilization of yeast nutrient transporters. Molecular and cellular biology, 27(16), 5725–5736. Pérez-Valle, J., Rothe, J., Primo, C., Martínez Pastor, M., Ariño, J., Pascual-Ahui r, A., Mulet, J. M., Serrano, R., & Yenush, L. (2010). Hal4 and Hal5 protein ki nases are required for general control of carbon and nitrogen uptake and metabol ism. Eukaryotic cell, 9(12), 1881–1890. Reggiori, F., & Tooze, S. A. (2012). Autophagy regulation through Atg9 traffic. The Journal of cell biology, 198(2), 151–153. Reggiori, F., Shintani, T., Nair, U., & Klionsky, D. J. (2005). Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy, 1(2), 101– 109. Reggiori, F., Tucker, K. A., Stromhaug, P. E., & Klionsky, D. J. (2004). The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Developmental cell, 6(1), 79–90. Rodríguez-Navarro A. (2000). Potassium transport in fungi and plants. Biochimica et biophysica acta, 1469(1), 1–30. Scott, S. V., Guan, J., Hutchins, M. U., Kim, J., & Klionsky, D. J. (2001). Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway. Molecular cell, 7(6), 1131– 1141. Scott, S. V., Nice, D. C., 3rd, Nau, J. J., Weisman, L. S., Kamada, Y., Keizer-Gunnink, I., Funakoshi, T., Veenhuis, M., Ohsumi, Y., & Klionsky, D. J. (2000). Apg13p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting. The Journal of biological chemistry, 275(33), 25840–25849. Sekito, T., Kawamata, T., Ichikawa, R., Suzuki, K., & Ohsumi, Y. (2009). Atg17 recruits Atg9 to organize the pre-autophagosomal structure. Genes to cells : devoted to molecular & cellular mechanisms, 14(5), 525–538. Shintani, T., & Klionsky, D. J. (2004). Autophagy in health and disease: a double-edged sword. Science (New York, N.Y.), 306(5698), 990–995. Shintani, T., Huang, W. P., Stromhaug, P. E., & Klionsky, D. J. (2002). Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Developmental cell, 3(6), 825–837. Stack, J. H., DeWald, D. B., Takegawa, K., & Emr, S. D. (1995). Vesicle-mediated protein transport: regulatory interactions between the Vps15 protein kinase and the Vps34 PtdIns 3-kinase essential for protein sorting to the vacuole in yeast. The Journal of cell biology, 129(2), 321–334. Stack, J. H., Herman, P. K., Schu, P. V., & Emr, S. D. (1993). A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. The EMBO journal, 12(5), 2195–2204. Suzuki, K., Akioka, M., Kondo-Kakuta, C., Yamamoto, H., & Ohsumi, Y. (2013). Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. Journal of cell science, 126(Pt 11), 2534–2544. Suzuki, K., Kubota, Y., Sekito, T., & Ohsumi, Y. (2007). Hierarchy of Atg proteins in pre- autophagosomal structure organization. Genes to cells : devoted to molecular & cellular mechanisms, 12(2), 209–218. Torggler, R., Papinski, D., & Kraft, C. (2017). Assays to Monitor Autophagy in Saccharomyces cerevisiae. Cells, 6(3), 23. Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson, R. S., Knight, J. R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M., Jhonston, M., Fields, S., & Rothberg, J. M. (2000). A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature, 403(6770), 623–627. Weidberg, H., Shvets, E., & Elazar, Z. (2011). Biogenesis and cargo selectivity of autophagosomes. Annual review of biochemistry, 80, 125–156. Wen, X., & Klionsky, D. J. (2016). An overview of macroautophagy in yeast. Journal of molecular biology, 428(9 Pt A), 1681–1699. Wollert, T. (2019). Autophagy. Current biology, CB, 29(14), R671–R677. Yamamoto, H., & Ohsumi, Y. (2014). The Molecular Mechanisms Underlying Au tophagosome Formation in Yeast. Autophagy: Cancer, Other Pathologies, Inflamm ation, Immunity, Infection, and Aging, Volume3-Mitophagy, 67-77. Yamamoto, H., Kakuta, S., Watanabe, T. M., Kitamura, A., Sekito, T., Kondo-Kakuta, C., Ichikawa, R., Kinjo, M., & Ohsumi, Y. (2012). Atg9 vesicles are an important membrane source during early steps of autophagosome formation.The Journal of cell biology, 198(2), 219–233. Yorimitsu, T., & Klionsky, D. J. (2005). Autophagy: molecular machinery for self- eating. Cell death and differentiation, 12 Suppl 2(Suppl 2), 1542–1552. Young, A. R., Chan, E. Y., Hu, X. W., Köchl, R., Crawshaw, S. G., High, S., Hailey, D. W., Lippincott-Schwartz, J., & Tooze, S. A. (2006). Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes.Journal of cell science, 119(Pt 18), 3888–3900. Yuga, M., Gomi, K., Klionsky, D. J., & Shintani, T. (2011). Aspartyl aminopepti dase is imported from the cytoplasm to the vacuole by selective autophagy in Sa ccharomyces cerevisiae. The Journal of biological chemistry, 286(15), 13704–137 13. Zaffagnini, G., & Martens, S. (2016). Mechanisms of Selective Autophagy. Journal of molecular biology, 428(9 Pt A), 1714–1724.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84998-
dc.description.abstract自噬是酵母菌到哺乳動物體內保存的主要細胞途徑,通過形成細胞質雙膜囊泡,使細胞質蛋白質聚集物和細胞器退化,稱爲自噬細胞。然後這些囊泡與液泡或溶酶體融合,從而導致細胞組分退化並循環利用。自噬功能障礙與 神經退行性疾病、癌症、代謝性疾病等多種人類疾病有關。因此這一途徑需 要適當的監管以防止有害影響和保持恆常性。自噬機制可分爲誘導、成核、 伸長、自噬體完成和融合五個階段。每個階段都由特定的自噬相關蛋白 (Atg 蛋白)和幾種激酶調節。酵母蛋白激酶 Hal4 和 Hal5 是維持 K+ 轉運體 Trk1 在腦糖漿膜上的血漿膜穩定性所需要的兩種功能冗餘 Ser/Thr 蛋白激酶。 之前的高吞吐量篩查發現 Hal5 和 Atg31 之間存在相互作用。 從這個實驗中,我的研究發現在發芽酵母中淘汰 HAL4 和 HAL5 基因顯示出 嚴重的自噬缺陷。本研究旨在探討 Hal4 和 Hal5 蛋白激酶在自噬調節中的作 用。實驗結果顯示,缺血細胞在體積自噬早期表現爲嚴重的自噬缺陷。 在 氮飢餓條件下,Hal4 和 Hal5 蛋白激酶可能與 Atg1 的適當定位有關。 結果, 在 Hal4 和 Hal5 突變體的 Atg9 磷酸化可以部分地被抑制。最後實驗結果指 出,非活性 Hal4 激酶突變體雖有明顯的生長缺陷,但沒有明顯的自噬調節 缺陷證據。zh_TW
dc.description.abstractAutophagy is the major cellular pathway conserved from yeast to mammals for the degradation of cytoplasmic protein aggregates and organelles by the formation of cytosolic double- membrane vesicles, called autophagosomes. Then these vesicles fuse with the vacuole or lysosomes, resulting in the degradation and recycling of cellular components. Dysfunction of autophagy is involved in various human diseases, such as neurodegenerative diseases, cancers, and metabolic diseases. Hence, this pathway requires proper regulation to prevent deleterious effects and preserve homeostasis. The autophagy mechanism can be divided into five stages, induction, nucleation, elongation, autophagosome completion and fusion. Each of these stages is regulated by specific autophagy-related proteins (Atg proteins) and several kinases. The yeast protein kinase Hal4 and Hal5 are two functionally redundant Ser/Thr protein kinases required for the maintenance of plasma membrane stability of the K+ transporter Trk1 at the plasma membrane in Saccharomyces cerevisiae. A previous high-throughput screening had found an interaction between Hal5 and Atg31. In addition, previous studies from our laboratory had found that knockout HAL4 and HAL5 genes in budding yeast showed severe autophagy defects. This study aimed to investigate the roles of Hal4 and Hal5 protein kinases in autophagy regulation. The experimental results showed that cells lacking hal4 and hal5 show severe autophagy defects in the early stages of bulk autophagy. Hal4 and Hal5 protein kinases might associate with the proper localization of Atg1 under nitrogen starvation conditions. As a consequence, Atg9 phosphorylation might be partially suppressed in hal4 and hal5 mutants. In addition, the kinase-dead hal4 mutant shows an obvious growth defect, but no clear evidence of autophagy regulation defect.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:37:15Z (GMT). No. of bitstreams: 1
U0001-2706202219174100.pdf: 8733508 bytes, checksum: 00bd2c524dc11dc5a97e446b53ceaf82 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 ACKNOWLEDGEMENT i 中文摘要 ii ABSTRACT iii 1. INTRODUCTION 1 AUTOPHAGY 1 SELECTIVE AUTOPHAGY 2 AUTOPHAGY MECHANISM AND AUTOPHAGY RELATED PROTEINS 4 Hal4 AND Hal5 PROTEIN KINASES 8 2. MATERIALS AND METHODS 10 2.1 STRAIN AND MEDIA 10 2.2 FLUORESCENCE MICROSCOPY 10 2.3 PREPARATION OF WHOLE YEAST CELL EXTRACTS FOR IMMUNOBLOTTING ANALYSIS 11 2.4 PHO8∆60 ASSAY 12 2.5 MAKING THE KINASES DEAD MUTANT STRAINS 13 2.6 GROWTH CURVE 13 3. RESULT 14 3.1 THE hal4∆hal5∆ STRAIN SHOWS SERIOUS AUTOPHAGY DEFECT 14 3.2 THE hal4∆hal5∆ STRAIN DOES NOT SHOW THE CVT PATHWAY DEFECT 16 3.3 POTASSIUM SUPPLEMENTATION IN NUTRIENT-RICH CONDITIONS CAN LEAD TO HIGH AUTOPHAGY ACTIVITY 17 3.4 THE hal4∆hal5∆ STRAIN IS INVOLVED IN THE EARLY STAGE OF AUTOPHAGY REGULATION 18 3.5 THE hal4∆hal5∆ STRAIN SHOWS ATG9 PHOSPHORYLATION DEFECT 19 3.6 THE hal4 KINASE ACTIVITY IS CRUCIAL FOR CELL GROWTH 20 4. DISCUSSION 23 5. REFERENCES 28 6. FIGURES AND TABLES 38 TABLE 1. YEAST STRAINS USED IN THIS STUDY 38 TABLE 2. PRIMERS USED FOR PLASMIDS CONSTRUCTION 39 TABLE 3. PLASMIDS USED IN THIS STUDY 40 FIGURE 1. 41 FIGURE 2. 44 FIGURE 3. 45 FIGURE 4. 46 FIGURE 5. 48 FIGURE 6. 49 FIGURE 7. 50 FIGURE 8. 52 FIGURE 9. 55 SUPPLEMENT FIGURE 1. 56
dc.language.isoen
dc.subject磷酸酶zh_TW
dc.subject非活性激酶突變體zh_TW
dc.subject自噬相關蛋白zh_TW
dc.subject細胞自噬zh_TW
dc.subjectkinase-dead mutanten
dc.subjectautophagyen
dc.subjectprotein kinaseen
dc.subjectautophagy-related proteinsen
dc.titleHal4 和 Hal5 磷酸酶調控細胞自噬之角色zh_TW
dc.titleThe Roles of Hal4 and Hal5 protein kinases in Autophagy Regulationen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee朱家瑩(Chia-Ying Chu),李心予(Hsin-Yu Lee)
dc.subject.keyword細胞自噬,磷酸酶,自噬相關蛋白,非活性激酶突變體,zh_TW
dc.subject.keywordautophagy,protein kinase,autophagy-related proteins,kinase-dead mutant,en
dc.relation.page56
dc.identifier.doi10.6342/NTU202201157
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
dc.date.embargo-lift2022-08-24-
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
U0001-2706202219174100.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
8.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved