Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84996
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor吳瑞菁(Jui-Ching Wu)
dc.contributor.authorYa-Chen Chiuen
dc.contributor.author邱雅貞zh_TW
dc.date.accessioned2023-03-19T22:37:08Z-
dc.date.copyright2022-10-13
dc.date.issued2022
dc.date.submitted2022-09-27
dc.identifier.citation1. Hunt, P.A. and T.J. Hassold, Sex matters in meiosis. Science, 2002. 296(5576): p. 2181-3. 2. Varmark, H., Functional role of centrosomes in spindle assembly and organization. J Cell Biochem, 2004. 91(5): p. 904-14. 3. Shakes, D.C., et al., Spermatogenesis-specific features of the meiotic program in Caenorhabditis elegans. PLoS Genet, 2009. 5(8): p. e1000611. 4. Soh, Y.Q.S., et al., Meioc maintains an extended meiotic prophase I in mice. PLoS Genet, 2017. 13(4): p. e1006704. 5. Crick, F., Central dogma of molecular biology. Nature, 1970. 227(5258): p. 561-3. 6. Martin, R.M. and M.C. Cardoso, Chromatin condensation modulates access and binding of nuclear proteins. FASEB J, 2010. 24(4): p. 1066-72. 7. Palozola, K.C., et al., Mitotic transcription and waves of gene reactivation during mitotic exit. Science, 2017. 358(6359): p. 119-122. 8. Cheng, Z., et al., Pervasive, Coordinated Protein-Level Changes Driven by Transcript Isoform Switching during Meiosis. Cell, 2018. 172(5): p. 910-923 e16. 9. Geisinger, A., R. Rodriguez-Casuriaga, and R. Benavente, Transcriptomics of Meiosis in the Male Mouse. Front Cell Dev Biol, 2021. 9: p. 626020. 10. GM., C., Translation of mRNA. The Cell: A Molecular Approach. 2nd edition. 2000. 11. Browning, K.S. and J. Bailey-Serres, Mechanism of cytoplasmic mRNA translation. Arabidopsis Book, 2015. 13: p. e0176. 12. Zou, Q., et al., Proteostasis regulated by testis-specific ribosomal protein RPL39L maintains mouse spermatogenesis. iScience, 2021. 24(12): p. 103396. 13. Sun, F., K. Palmer, and M.A. Handel, Mutation of Eif4g3, encoding a eukaryotic translation initiation factor, causes male infertility and meiotic arrest of mouse spermatocytes. Development, 2010. 137(10): p. 1699-707. 14. Lowe, D.D. and D.J. Montell, Unconventional translation initiation factor EIF2A is required for Drosophila spermatogenesis. Dev Dyn, 2022. 251(2): p. 377-389. 15. Amiri, A., et al., An isoform of eIF4E is a component of germ granules and is required for spermatogenesis in C. elegans. Development, 2001. 128(20): p. 3899-912. 16. Henderson, M.A., et al., A germline-specific isoform of eIF4E (IFE-1) is required for efficient translation of stored mRNAs and maturation of both oocytes and sperm. J Cell Sci, 2009. 122(Pt 10): p. 1529-39. 17. Kawasaki, I., M.H. Jeong, and Y.H. Shim, Regulation of sperm-specific proteins by IFE-1, a germline-specific homolog of eIF4E, in C. elegans. Mol Cells, 2011. 31(2): p. 191-7. 18. 陳宇豪, 以線蟲為模型探討在精子生成過程中兩次減數分裂之間過渡時期的表徵, in 醫學檢驗暨生物技術學研究所. 2021, 國立臺灣大學. p. 1-76. 19. Ivshina, M., P. Lasko, and J.D. Richter, Cytoplasmic polyadenylation element binding proteins in development, health, and disease. Annu Rev Cell Dev Biol, 2014. 30: p. 393-415. 20. Wu, X. and G. Brewer, The regulation of mRNA stability in mammalian cells: 2.0. Gene, 2012. 500(1): p. 10-21. 21. Richter, J.D., Cytoplasmic polyadenylation in development and beyond. Microbiol Mol Biol Rev, 1999. 63(2): p. 446-56. 22. Kronja, I. and T.L. Orr-Weaver, Translational regulation of the cell cycle: when, where, how and why? Philos Trans R Soc Lond B Biol Sci, 2011. 366(1584): p. 3638-52. 23. Groppo, R. and J.D. Richter, CPEB control of NF-kappaB nuclear localization and interleukin-6 production mediates cellular senescence. Mol Cell Biol, 2011. 31(13): p. 2707-14. 24. Hervas, R., et al., Cryo-EM structure of a neuronal functional amyloid implicated in memory persistence in Drosophila. Science, 2020. 367(6483): p. 1230-1234. 25. Luitjens, C., et al., CPEB proteins control two key steps in spermatogenesis in C. elegans. Genes Dev, 2000. 14(20): p. 2596-609. 26. Gilmutdinov, R., et al., The 3'UTR of the Drosophila CPEB translation factor gene orb2 plays a crucial role in spermatogenesis. Development, 2021. 148(17). 27. Zukin, R.S., J.D. Richter, and C. Bagni, Signals, synapses, and synthesis: how new proteins control plasticity. Front Neural Circuits, 2009. 3: p. 14. 28. Gebauer, F. and M.W. Hentze, Fertility facts: male and female germ cell development requires translational control by CPEB. Mol Cell, 2001. 8(2): p. 247-9. 29. Setoyama, D., M. Yamashita, and N. Sagata, Mechanism of degradation of CPEB during Xenopus oocyte maturation. Proc Natl Acad Sci U S A, 2007. 104(46): p. 18001-6. 30. Radford, H.E., H.A. Meijer, and C.H. de Moor, Translational control by cytoplasmic polyadenylation in Xenopus oocytes. Biochim Biophys Acta, 2008. 1779(4): p. 217-29. 31. Coll, O., et al., A novel, noncanonical mechanism of cytoplasmic polyadenylation operates in Drosophila embryogenesis. Genes Dev, 2010. 24(2): p. 129-34. 32. La, H.M. and R.M. Hobbs, Mechanisms regulating mammalian spermatogenesis and fertility recovery following germ cell depletion. Cell Mol Life Sci, 2019. 76(20): p. 4071-4102. 33. Hubbard, E.J. and D. Greenstein, The Caenorhabditis elegans gonad: a test tube for cell and developmental biology. Dev Dyn, 2000. 218(1): p. 2-22. 34. Chu, D.S., et al., Sperm chromatin proteomics identifies evolutionarily conserved fertility factors. Nature, 2006. 443(7107): p. 101-5. 35. Ashley, G.E., et al., An expanded auxin-inducible degron toolkit for Caenorhabditis elegans. Genetics, 2021. 217(3). 36. Zhang, L., et al., The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans. Development, 2015. 142(24): p. 4374-84. 37. Martinez, M.A.Q., et al., Rapid Degradation of Caenorhabditis elegans Proteins at Single-Cell Resolution with a Synthetic Auxin. G3 (Bethesda), 2020. 10(1): p. 267-280. 38. Divekar, N.S., H.E. Horton, and S.M. Wignall, Methods for Rapid Protein Depletion in C. elegans using Auxin-Inducible Degradation. Curr Protoc, 2021. 1(2): p. e16. 39. Adhikari, B., A. Narain, and E. Wolf, Generation of auxin inducible degron (AID) knock-in cell lines for targeted protein degradation in mammalian cells. STAR Protoc, 2021. 2(4): p. 100949. 40. Macdonald, L., et al., Rapid and specific degradation of endogenous proteins in mouse models using auxin-inducible degrons. Elife, 2022. 11. 41. Bence, M., et al., Combining the auxin-inducible degradation system with CRISPR/Cas9-based genome editing for the conditional depletion of endogenous Drosophila melanogaster proteins. FEBS J, 2017. 284(7): p. 1056-1069. 42. Trost, M., A.C. Blattner, and C.F. Lehner, Regulated protein depletion by the auxin-inducible degradation system in Drosophila melanogaster. Fly (Austin), 2016. 10(1): p. 35-46. 43. Stiernagle, T., Maintenance of C. elegans. WormBook, 2006: p. 1-11. 44. Brenner, S., The genetics of Caenorhabditis elegans. Genetics, 1974. 77(1): p. 71-94. 45. Martinez, M.A.Q. and D.Q. Matus, Auxin-mediated Protein Degradation in Caenorhabditis elegans. Bio Protoc, 2020. 10(8). 46. Dokshin, G.A., et al., Robust Genome Editing with Short Single-Stranded and Long, Partially Single-Stranded DNA Donors in Caenorhabditis elegans. Genetics, 2018. 210(3): p. 781-787. 47. Mello, C.C., et al., Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J, 1991. 10(12): p. 3959-70. 48. Wu, J.C., et al., Sperm development and motility are regulated by PP1 phosphatases in Caenorhabditis elegans. Genetics, 2012. 190(1): p. 143-57. 49. Jaramillo-Lambert, A., et al., Differential timing of S phases, X chromosome replication, and meiotic prophase in the C. elegans germ line. Dev Biol, 2007. 308(1): p. 206-21. 50. Huang, Y., et al., Autophagy Participates in Lysosomal Vacuolation-Mediated Cell Death in RGNNV-Infected Cells. Front Microbiol, 2020. 11: p. 790. 51. Jin, Y. and L.S. Weisman, The vacuole/lysosome is required for cell-cycle progression. Elife, 2015. 4. 52. Wang, J.Y., DNA damage and apoptosis. Cell Death Differ, 2001. 8(11): p. 1047-8. 53. Wang, J.T. and G. Seydoux, P granules. Curr Biol, 2014. 24(14): p. R637-R638. 54. Seydoux, G., The P Granules of C. elegans: A Genetic Model for the Study of RNA-Protein Condensates. J Mol Biol, 2018. 430(23): p. 4702-4710. 55. Winter, E.S., et al., Cytoskeletal variations in an asymmetric cell division support diversity in nematode sperm size and sex ratios. Development, 2017. 144(18): p. 3253-3263. 56. Shubin, A.V., et al., Cytoplasmic vacuolization in cell death and survival. Oncotarget, 2016. 7(34): p. 55863-55889. 57. Monel, B., et al., Zika virus induces massive cytoplasmic vacuolization and paraptosis-like death in infected cells. EMBO J, 2017. 36(12): p. 1653-1668. 58. Aki, T., A. Nara, and K. Uemura, Cytoplasmic vacuolization during exposure to drugs and other substances. Cell Biol Toxicol, 2012. 28(3): p. 125-31.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84996-
dc.description.abstract精子生成是雄性性腺中產生成熟精子的獨特過程。先前研究發現,在秀麗隱桿線蟲的精母細胞開始減數分裂前,轉錄就停止了,代表該過程主要依賴轉錄後及轉譯調節,這與我們先前研究發現抑制轉譯會阻止減數分裂之進行相互呼應。 本研究探討精子特異性轉譯調節因子CPB-1在秀麗隱桿線蟲精子生成中的作用。CPB-1是一種細胞質聚腺苷酸化元件結合蛋白 (Cytoplasmic polyadenylation element binding, CPEB),其被認為可以透過與mRNA 3’端非翻譯區中的特定序列結合來調節轉譯。 為了研究CPB-1在精子生成中的作用,我們透過CRISPR技術將帶有AID*標記的序列嵌入cpb-1基因,以利用生長素誘導降解系統 (Auxin-inducible degradation, AID) 使內源性CPB-1降解。 我們發現在雄性的生殖系統中,CPB-1可在幾小時內被誘導降解,且此降解具有可逆性。此外,缺乏CPB-1的雌雄同體線蟲生育力大幅削弱,但其生育能力在提供正常精子後得以恢復,此結果表明CPB-1對雄性生育能力是不可或缺的,但不影響雌性。 利用免疫螢光觀察CPB-1在雄性生殖腺中的分佈,我們發現CPB-1在雄性減數分裂前期 (prophase) 的細胞質中表達,而消失在減數分裂後期和分裂的精母細胞中,此外,缺乏CPB-1的精母細胞染色體無法正確進行染色質濃縮,而且在性腺中堆積未能正常分裂的精母細胞。縮時影像攝影觀察的結果發現缺乏CPB-1的初級精母細胞大量停滯並伴隨嚴重的染色體分離缺陷,且通常含有非溶酶體的細胞質液泡狀結構。綜合以上,我們發現CPB-1在減數分裂前期調控精子第一次減數分裂時所需之蛋白質生成,以協助配對後的同源染色體再次濃縮及促使精子減數分裂。 最後,為了找出由CPB-1調節的目標mRNA及其下游影響的蛋白質,我們比較正常及CPB-1缺乏的雄性線蟲蛋白質萃取物,初步分析顯示,CPB-1缺乏對雄性線蟲整體蛋白質組成沒有顯著影響,但有數個未知蛋白質的表現明顯低下。這些結果將有助於其後蛋白質體分析之研究,以暸解受CPB-1調控之蛋白質如何促進雄性生育能力。zh_TW
dc.description.abstractSpermatogenesis is a unique process in the male gonads to produce mature spermatozoa. Previous studies show that transcription ceases before spermatocyte begins meiotic divisions in nematode Caenorhabditis elegans, indicating the process is mainly regulated at the post-transcriptional and translational levels. Consistently, our previous study showed that inhibition of translation prevented the progression of meiotic division. In this study, we aim to investigate the roles of spermatogenic-specific translation regulator CPB-1 in C. elegans spermatogenesis. CPB-1 is a cytoplasmic polyadenylation element binding (CPEB) protein that is predicted to regulate translation of mRNAs through binding to specific sequences in the 3' untranslated region. To investigate the roles of CPB-1 in spermatogenesis, we CRISPR-engineered an AID* tag inserted into genomic cpb-1, allowing Auxin-inducible degradation of endogenous CPB-1. We showed that CPB-1 degradation can be reversibly induced in both male germline within a few hours. CPB-1-depleted hermaphrodites showed significant sterility that could be rescued with wild-type sperm, suggesting that CPB-1 is essential in male but not female fertility. Results from immunofluorescence staining showed that CPB-1 is expressed in the cytoplasm of male meiotic prophase, and is absent from late meiotic and dividing spermatocytes. Also, paired homologous chromosomes failed to undergo proper condensation stages, leading to accumulation of immature spermatocytes in CPB-1-depleted males. Time-lapse recordings revealed that CPB-1-depleted spermatocytes exhibited severe chromosomal segregation defects and failed to initiate the first meiotic division. Additionally, CPB-1-depleted spermatocytes often contain cytoplasmic vacuole-like structures that were not lysosomal origin. Taken together, we hypothesize that during male meiotic prophase, CPB-1 regulates the production of proteins essential for late meiotic chromosome condensation and initiation of male meiotic division. To identify the target mRNAs regulated by CPB-1 and their downstream proteins, we compared male worm extracts generated from wild-type and CPB-1-depleted male worms. Preliminary analysis revealed that CPB-1 depletion does not impact global proteome in male worms, however, a few proteins were significantly reduced. These results facilitate further proteomic analyses to elucidate how CPB-1-dependent proteostasis contributes to male fertility.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:37:08Z (GMT). No. of bitstreams: 1
U0001-2309202214190300.pdf: 11503156 bytes, checksum: 2131c02bd9cd7c4da9f85484c0464759 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 i 誌謝 ii 摘要 iii Abstract v Chapter 1 -Introduction 1 Chapter 2 -Materials and Methods 10 2.1 C. elegans strains and maintenance 10 2.2 AID*::3xFLAG::CPB-1 strain construction 10 2.3 Auxin-inducible degradation (AID) experiment 11 2.4 Brood size and hatch rate assay 12 2.5 Immunofluorescence staining 13 2.6 Time-lapse microscopy 14 2.7 LysoTracker labeling 15 2.8 Preparation of whole male worm extraction 15 2.9 Biochemical protein analyses 16 2.9.1 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 16 2.9.2 Silver staining 16 2.9.3 Immunoblotting assay 16 2.10 Image processing and statistical analyses 17 Chapter 3 -Results 18 3.1 Generation of inducible CPB-1 depleted strain. 18 3.2 Optimization of Auxin-inducible degradation (AID) in the germline. 19 3.3 CPB-1 functions in sperm production contributing to fertility. 21 3.4 CPB-1 localizes in the cytoplasm of the pachytene zone before meiotic division in the male germline. 22 3.5 CPB-1 depleted spermatocytes lack karyosome and accumulate at the metaphase-like stage. 23 3.6 Spermatogonia lacking CPB-1 were mostly stuck in the primary spermatocyte stage and unable to undergo meiotic division. 24 3.7 CPB-1 depletion caused vacuolization of spermatocyte cytoplasm. 26 3.8 CPB-1 depletion does not impact global proteome in male worms. 27 Chapter 4 -Discussion 29 4.1 CPB-1 is expressed in the cytoplasm of the pachytene zone, and forms the granular aggregates around the nucleus in the male germline. 29 4.2 The non-specific binding of anti-FLAG antibody showed in immunofluorescence staining and Western blotting. 30 4.3 CPB-1-depleted spermatocytes lacked tubular structure and showed vacuole-like structure in the cytoplasm. 31 4.4 The hypothetical mechanism of CPB-1 regulates translation and contributes to abnormal male meiosis. 32 4.5 Potential target mRNAs regulated by CPB-1. 33 Figure 35 Figure 1. Overview of the study: CPB-1 modulates translation of key proteins during spermatogenesis. 35 Figure 2. Construction of AID*::3xFLAG::cpb-1 transgenic strain. 36 Figure 3. AID-tagged proteins degradation optimizes in both hermaphrodite and male C. elegans germline. 38 Figure 4. CPB-1 depletion hermaphrodites reduced progeny dues to sperm defects. 40 Figure 5. CPB-1 could be degraded by 1 mM K-NAA after 2 hours treatment in male germline. 41 Figure 6. CPB-1 localizes in the cytoplasm of the pachytene zone in the male gonad. 42 Figure 7. CPB-1 depletion causes absence of karyosome stage and accumulation of metaphase-like spermatocytes in the male germline. 45 Figure 8. CPB-1 depletion caused various phenotypes during spermatogenesis. 48 Figure 9. Comparison of protein extracts from control and CPB-1-depleted male worms. 50 Table 51 Table 1. The C. elegans strain used in this study. 51 Table 2. Plasmid used in this study. 52 Table 3. Oligonucleotides used in this study. 53 Reference 54 Appendix 62
dc.language.isoen
dc.subjectCPB-1zh_TW
dc.subject精子生成zh_TW
dc.subject生長素誘導蛋白質降解zh_TW
dc.subject減數分裂zh_TW
dc.subjectCPEBzh_TW
dc.subjectAuxin-induced degradationen
dc.subjectSpermatogenesisen
dc.subjectCPEBen
dc.subjectCPB-1en
dc.subjectmeiosisen
dc.title以線蟲為模型探討雄性減數分裂特異性CPEB調控蛋白CPB-1在精子生成過程扮演的角色zh_TW
dc.titleInvestigating the roles of male meiosis-specific CPEB protein CPB-1 during spermatogenesis in Caenorhabditis elegans.en
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee薛雁冰(Yen-Ping Hsueh),王齡玉(Ling-Yu Wang),蔡欣祐(Hsin-Yue Tsai),郭靜穎(Ching-Ying Kuo)
dc.subject.keyword精子生成,CPEB,CPB-1,減數分裂,生長素誘導蛋白質降解,zh_TW
dc.subject.keywordSpermatogenesis,CPEB,CPB-1,meiosis,Auxin-induced degradation,en
dc.relation.page62
dc.identifier.doi10.6342/NTU202203909
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
dc.date.embargo-lift2022-10-13-
Appears in Collections:醫學檢驗暨生物技術學系

Files in This Item:
File SizeFormat 
U0001-2309202214190300.pdf
Access limited in NTU ip range
11.23 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved