請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84994完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳志毅(Chi-Hi Wu) | |
| dc.contributor.author | Po-Chou Tsao | en |
| dc.contributor.author | 曹博洲 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:37:01Z | - |
| dc.date.copyright | 2022-09-07 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-22 | |
| dc.identifier.citation | [1] G. E. Moore, 'Cramming more components onto integrated circuits,' Proceedings of the IEEE, vol. 86, no. 1, pp. 82-85, 1998. [2] A. Kelleher. 'Moore’s Law – Now and in the Future.' https://www.intel.com/content/www/us/en/newsroom/opinion/moore-law-now-and-in-the-future.html#gs.41bmtz (accessed. [3] B. Sheu, K. Wilcox, A. M. Keshavarzi, and D. Antoniadis, 'EP1: Moore's law challenges below 10nm: Technology, design and economic implications,' in 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers, 2015: IEEE, pp. 1-1. [4] M. R. Baklanov, C. Adelmann, L. Zhao, and S. De Gendt, 'Advanced interconnects: materials, processing, and reliability,' ECS Journal of Solid State Science and Technology, vol. 4, no. 1, pp. Y1-Y4, 2015. [5] R. Henriquez, L. Moraga, G. Kremer, M. Flores, A. Espinosa, and R. C. Munoz, 'Size effects in thin gold films: Discrimination between electron-surface and electron-grain boundary scattering by measuring the Hall effect at 4 K,' Applied Physics Letters, vol. 102, no. 5, p. 051608, 2013. [6] K. Khoo, S. Tashiro, and J. Onuki, 'Influence on the electro-migration resistance by line width and average grain size along the longitudinal direction of very narrow cu wires,' Materials transactions, pp. 1006141096-1006141096, 2010. [7] Z. Guan, M. Marek-Sadowska, and S. Nassif, 'SRAM bit-line electromigration mechanism and its prevention scheme,' in International Symposium on Quality Electronic Design (ISQED), 2013: IEEE, pp. 286-293. [8] K.-H. Koo, The Comparison Study of Future On-chip Interconnects for High Performance VLSI Applications. Stanford University, 2011. [9] J. Lienig, 'Electromigration and its impact on physical design in future technologies,' in Proceedings of the 2013 ACM International symposium on Physical Design, 2013, pp. 33-40. [10] A. Lodder and J. Dekker, 'The electromigration force in metallic bulk,' in AIP Conference Proceedings, 1998, vol. 418, no. 1: American Institute of Physics, pp. 315-328. [11] Y. Hsu et al., 'Failure mechanism of electromigration in via sidewall for copper dual damascene interconnection,' Journal of The Electrochemical Society, vol. 153, no. 8, p. G782, 2006. [12] K. Fuchs, 'The conductivity of thin metallic films according to the electron theory of metals,' in Mathematical Proceedings of the Cambridge Philosophical Society, 1938, vol. 34, no. 1: Cambridge University Press, pp. 100-108. [13] E. Sondheimer, 'The influence of a transverse magnetic field on the conductivity of thin metallic films,' Physical Review, vol. 80, no. 3, p. 401, 1950. [14] C. Adelmann et al., 'Alternative metals for advanced interconnects,' in IEEE International Interconnect Technology Conference, 2014: IEEE, pp. 173-176. [15] D. Gall, 'Electron mean free path in elemental metals,' Journal of Applied Physics, vol. 119, no. 8, p. 085101, 2016. [16] M. H. van der Veen et al., 'Cobalt bottom-up contact and via prefill enabling advanced logic and DRAM technologies,' in 2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM), 2015: IEEE, pp. 25-28. [17] L. G. Wen et al., 'Atomic layer deposition of ruthenium with TiN interface for sub-10 nm advanced interconnects beyond copper,' ACS applied materials & interfaces, vol. 8, no. 39, pp. 26119-26125, 2016. [18] J. R. Black, 'Electromigration—A brief survey and some recent results,' IEEE Transactions on Electron Devices, vol. 16, no. 4, pp. 338-347, 1969. [19] O. V. Pedreira et al., 'Reliability study on cobalt and ruthenium as alternative metals for advanced interconnects,' in 2017 IEEE International Reliability Physics Symposium (IRPS), 2017: IEEE, pp. 6B-2.1-6B-2.8. [20] M. I. Katsnelson, 'Graphene: carbon in two dimensions,' Materials today, vol. 10, no. 1-2, pp. 20-27, 2007. [21] N. D. Mermin, 'Crystalline order in two dimensions,' Physical Review, vol. 176, no. 1, p. 250, 1968. [22] K. S. Novoselov et al., 'Electric field effect in atomically thin carbon films,' science, vol. 306, no. 5696, pp. 666-669, 2004. [23] T. Wehling et al., 'Molecular doping of graphene,' Nano letters, vol. 8, no. 1, pp. 173-177, 2008. [24] E. McCann, 'Electronic properties of monolayer and bilayer graphene,' in Graphene nanoelectronics: Springer, 2011, pp. 237-275. [25] C. Lee, X. Wei, J. W. Kysar, and J. Hone, 'Measurement of the elastic properties and intrinsic strength of monolayer graphene,' science, vol. 321, no. 5887, pp. 385-388, 2008. [26] G. Yang, L. Li, W. B. Lee, and M. C. Ng, 'Structure of graphene and its disorders: a review,' Science and technology of advanced materials, vol. 19, no. 1, pp. 613-648, 2018. [27] A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, 'The electronic properties of graphene,' Reviews of modern physics, vol. 81, no. 1, p. 109, 2009. [28] A. K. Geim and K. S. Novoselov, 'The rise of graphene,' in Nanoscience and technology: a collection of reviews from nature journals: World Scientific, 2010, pp. 11-19. [29] K. S. Novoselov et al., 'Two-dimensional gas of massless Dirac fermions in graphene,' nature, vol. 438, no. 7065, pp. 197-200, 2005. [30] J. Hass, W. De Heer, and E. Conrad, 'The growth and morphology of epitaxial multilayer graphene,' Journal of Physics: Condensed Matter, vol. 20, no. 32, p. 323202, 2008. [31] S. Lilov, 'Study of the equilibrium processes in the gas phase during silicon carbide sublimation,' Materials Science and Engineering: B, vol. 21, no. 1, pp. 65-69, 1993. [32] G. R. Yazdi, T. Iakimov, and R. Yakimova, 'Epitaxial graphene on SiC: a review of growth and characterization,' Crystals, vol. 6, no. 5, p. 53, 2016. [33] X. Li et al., 'Highly conducting graphene sheets and Langmuir–Blodgett films,' Nature nanotechnology, vol. 3, no. 9, pp. 538-542, 2008. [34] K. F. McCarty, P. J. Feibelman, E. Loginova, and N. C. Bartelt, 'Kinetics and thermodynamics of carbon segregation and graphene growth on Ru (0 0 0 1),' Carbon, vol. 47, no. 7, pp. 1806-1813, 2009. [35] Y. Wang et al., 'Scalable synthesis of graphene on patterned Ni and transfer,' IEEE transactions on electron devices, vol. 57, no. 12, pp. 3472-3476, 2010. [36] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, 'Graphene segregated on Ni surfaces and transferred to insulators,' Applied physics letters, vol. 93, no. 11, p. 113103, 2008. [37] X. Chen, L. Zhang, and S. Chen, 'Large area CVD growth of graphene,' Synthetic Metals, vol. 210, pp. 95-108, 2015. [38] R. Mehta, S. Chugh, and Z. Chen, 'Enhanced electrical and thermal conduction in graphene-encapsulated copper nanowires,' Nano letters, vol. 15, no. 3, pp. 2024-2030, 2015. [39] L. Li, Z. Zhu, T. Wang, J. A. Currivan-Incorvia, A. Yoon, and H.-S. P. Wong, 'BEOL compatible graphene/Cu with improved electromigration lifetime for future interconnects,' in 2016 IEEE International Electron Devices Meeting (IEDM), 2016: IEEE, pp. 9.5. 1-9.5. 4. [40] 宏. 蕭, 半導體製程技術導論 / 蕭宏著 = Introduction to semiconductor manufacturing technology / Hong Xiao, 第三版 ed. 新北市: 全華圖書股份有限公司, 2014. [41] H. Conrads and M. Schmidt, 'Plasma generation and plasma sources,' Plasma Sources Science and Technology, vol. 9, no. 4, p. 441, 2000. [42] Y. Setsuhara, 'Low-temperature atmospheric-pressure plasma sources for plasma medicine,' Archives of biochemistry and biophysics, vol. 605, pp. 3-10, 2016. [43] F. Ibrahim, 'Design and Construction of low-Pressure DC-Sputtering plasma system for preparing Gas Sensors,' University of Baghdad, PhD. Thesis, 2013. [44] M. Son et al., 'Copper-graphene heterostructure for back-end-of-line compatible high-performance interconnects,' npj 2D Materials and Applications, vol. 5, no. 1, pp. 1-7, 2021. [45] C.-M. Sung and M.-F. Tai, 'Reactivities of transition metals with carbon: Implications to the mechanism of diamond synthesis under high pressure,' International Journal of Refractory Metals and Hard Materials, vol. 15, no. 4, pp. 237-256, 1997. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84994 | - |
| dc.description.abstract | 在本研究中,我們在後端製程所使用之鈷及釕導線上直接成長石墨烯,形成鈷或釕-石墨烯異質結構導線。其中我們是透過熱燈絲輔助感應耦合型化學氣相沉積系統並搭配苯或乙炔作為前驅物於金屬導線上成長石墨烯。對於不同的金屬,會因為不同的對碳溶解率而有不同的成長機制,碳溶解率較高的金屬會傾向以偏析的方式成長石墨烯;而碳溶解率較低的金屬則會傾向以表面催化的方式成長石墨烯。 因此,在此研究中我們使用不同前驅物針對不同金屬進行石墨烯品質的優化。我們發現金屬-石墨烯異質結構導線有更低的電阻值,以鈷-石墨烯異質結構導線與鈷導線相比,阻值下降了3.04%;而釕-石墨烯異質結構導線與釕導線相比則下降了1.6%。可靠度量測的部分,異質結構導線有更高的最大耐受電流及導線可靠度,鈷-石墨烯異質結構導線最大耐受電流提升17.6%;釕-石墨烯異質結構導線則提升了10.6%。並且鈷-石墨烯異質結構導線在5 MA/cm2的高密度電流下,在200°C下的平均失效時間為純鈷導線的3倍;釕-石墨烯異質結構導線在40 MA/cm2的電流密度下,在200°C下的平均失效時間為釕導線的3倍。 總結來說,相較於金屬導線,金屬-石墨烯異質結構導線有更低的電阻值、更高的崩潰電流密度及更長的導線平均失效時間。 | zh_TW |
| dc.description.abstract | For this study, we demonstrate the fabrication of cobalt-graphene or ruthenium-graphene heterostructure wires by direct growth of graphene on BEOL interconnect. We use benzene or acetylene as a precursor to deposition multilayer graphene on cobalt or ruthenium wire through a hot filament-assisted inductively coupled plasma chemical vapor deposition system. For different metals, we find growth mechanisms can be different as carbon solubility changes. Metals with higher carbon solubility tend to deposition graphene by segregation; while metals with lower carbon solubility tend to form graphene by surface catalytic. Therefore, we improve the quality of graphene by using different precursors on different kinds of metals in the experiment. We find that metal-graphene heterostructure wires have lower resistance. The resistance of the cobalt wire and the ruthenium have dropped by 3.04% and 1.6% respectively after the graphene is capped on the surface. As far as the reliability measurement is concerned, the metal-graphene heterostructure wires have higher breakdown current and reliability. The breakdown current density of cobalt and the ruthenium wire both with graphene capping have increased 17.6% and 10.6%, respectively. Furthermore, the cobalt-graphene heterostructure wires have MTTF of 3 times that of pure cobalt wire at 200°C under a high current density of 5MA/cm2, and the ruthenium-graphene heterostructure wires have MTTF of 3 times that of ruthenium wire at 200°C under a high current density of 40MA/cm2. To summarize, metal-graphene heterostructure wires show lower resistance, higher breakdown current density, and longer mean time to failure, compared to metal wires. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:37:01Z (GMT). No. of bitstreams: 1 U0001-1108202214363800.pdf: 5041025 bytes, checksum: 8c33448121c6e79b1107181ef237b402 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 I 摘要 IV ABSTRACT V 目錄 VII 圖目錄 XI 表目錄 XV 第1章 緒論 1 1.1 半導體發展趨勢 1 1.1.1 製程演進 2 1.1.2 金屬導線內連接對於後端製程的重要性 2 1.2 金屬導線內連接(Interconnect) 3 1.2.1 金屬導線內連接瓶頸 3 1.2.2 電致遷移效應 (Electromigration, EM) 4 1.2.3 銅導線的替代方案 6 1.3 石墨烯簡介 8 1.3.1 石墨烯的晶格結構 9 1.3.2 石墨烯的電子能帶結構 10 1.3.3 石墨烯的製備方法 13 1.3.4 石墨烯於金屬內導線連接的應用 18 1.4 研究動機 20 第2章 實驗原理、儀器與方法 22 2.1 製程儀器介紹 22 2.1.1 手套箱 22 2.1.2 感應式耦合型電漿輔助化學氣相沉積系統 23 2.1.3 光罩對準機(曝光機 Mask aligner) 23 2.1.4 步進式曝光機 (Stepper) 24 2.2 量測儀器介紹 25 2.2.1 拉曼光譜儀 25 2.2.2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 26 2.2.3 電性量測設備 27 2.3 實驗原理 27 2.3.1 感應耦合型電漿 27 2.3.2 石墨烯生長機制 34 2.4 實驗步驟 37 2.4.1 生長基板製備 37 2.4.2 石墨烯生長 38 2.4.3 氫氣電漿蝕刻石墨烯 38 2.4.4 封裝層的製備 39 第3章 石墨烯材料分析 40 3.1 實驗架構 41 3.2 石墨烯的品質分析 44 3.3 石墨烯於金屬薄膜上之生長 45 3.3.1 鈷薄膜 45 3.3.2 釕薄膜 46 3.3.3 前驅物與金屬的影響 47 3.4 石墨烯於金屬導線上之生長 49 3.4.1 鈷導線 49 3.4.2 釕導線 50 3.4.3 電阻值比較 52 第4章 金屬導線可靠度量測 54 4.1 崩潰電流密度 54 4.1.1 焦耳熱效應(Joule Heating Effect) 55 4.1.2 金屬鈷導線 55 4.1.3 金屬釕導線 57 4.2 電致遷移效應 59 4.2.1 金屬鈷導線 60 4.2.2 金屬釕導線 62 4.3 活化能 63 第5章 總結與未來展望 65 5.1 總結 65 5.2 未來展望 67 參考文獻 68 | |
| dc.language.iso | zh-TW | |
| dc.subject | 低熱預算 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 感應耦合型電漿化學氣相沉積法 | zh_TW |
| dc.subject | 金屬薄膜 | zh_TW |
| dc.subject | 金屬導線 | zh_TW |
| dc.subject | 崩潰電流密度 | zh_TW |
| dc.subject | 電致遷移效應 | zh_TW |
| dc.subject | low thermal budget | en |
| dc.subject | metal wire | en |
| dc.subject | graphene | en |
| dc.subject | Inductively coupled plasma chemical vapor deposition | en |
| dc.subject | breakdown current density | en |
| dc.subject | electromigration | en |
| dc.subject | metal film | en |
| dc.title | 低熱預算生長石墨烯於金屬導線以提升導線可靠度 | zh_TW |
| dc.title | Improve Reliability of Metal wire by Capping Graphene with Low Thermal Budget | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳肇欣(Chao-Hsin Wu),林致廷(Chih-Ting Lin),陳美杏(Mei-Hsin Chen) | |
| dc.subject.keyword | 感應耦合型電漿化學氣相沉積法,石墨烯,低熱預算,金屬薄膜,金屬導線,崩潰電流密度,電致遷移效應, | zh_TW |
| dc.subject.keyword | Inductively coupled plasma chemical vapor deposition,graphene,low thermal budget,metal film,metal wire,breakdown current density,electromigration, | en |
| dc.relation.page | 70 | |
| dc.identifier.doi | 10.6342/NTU202202300 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-22 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-31 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1108202214363800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
