請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84989完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳健銘(Chien-Ming Wu) | |
| dc.contributor.author | Tzung-Yu Tsai | en |
| dc.contributor.author | 蔡宗育 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:36:43Z | - |
| dc.date.copyright | 2022-08-24 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-22 | |
| dc.identifier.citation | Alexander, M. J., & Holton, J. R. (1997, 01 Feb. 1997). A Model Study of Zonal Forcing in the Equatorial Stratosphere by Convectively Induced Gravity Waves. Journal of the Atmospheric Sciences, 54(3), 408-419. https://doi.org/10.1175/1520-0469(1997)054<0408:Amsozf>2.0.Co;2 Anstey, J. A., Scinocca, J. F., & Keller, M. (2016, 01 Apr. 2016). Simulating the QBO in an Atmospheric General Circulation Model: Sensitivity to Resolved and Parameterized Forcing. Journal of the Atmospheric Sciences, 73(4), 1649-1665. https://doi.org/10.1175/jas-d-15-0099.1 Arakawa, A., & Wu, C.-M. (2013, 01 Jul. 2013). A Unified Representation of Deep Moist Convection in Numerical Modeling of the Atmosphere. Part I. Journal of the Atmospheric Sciences, 70(7), 1977-1992. https://doi.org/10.1175/jas-d-12-0330.1 Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., & Takahashi, M. (2001). The quasi-biennial oscillation. Reviews of Geophysics, 39(2), 179-229. https://doi.org/https://doi.org/10.1029/1999RG000073 Beres, J. H., Alexander, M. J., & Holton, J. R. (2002, 01 Jun. 2002). Effects of Tropospheric Wind Shear on the Spectrum of Convectively Generated Gravity Waves. Journal of the Atmospheric Sciences, 59(11), 1805-1824. https://doi.org/10.1175/1520-0469(2002)059<1805:Eotwso>2.0.Co;2 Booker, J. R., & Bretherton, F. P. (1967). The critical layer for internal gravity waves in a shear flow. Journal of Fluid Mechanics, 27(3), 513-539. https://doi.org/10.1017/S0022112067000515 Bretherton, C. S., Blossey, P. N., & Khairoutdinov, M. (2005, 01 Dec. 2005). An Energy-Balance Analysis of Deep Convective Self-Aggregation above Uniform SST. Journal of the Atmospheric Sciences, 62(12), 4273-4292. https://doi.org/10.1175/jas3614.1 Bui, H.-H., Nishimoto, E., & Yoden, S. (2017, 01 Nov. 2017). Downward Influence of QBO-Like Oscillation on Moist Convection in a Two-Dimensional Minimal Model Framework. Journal of the Atmospheric Sciences, 74(11), 3635-3655. https://doi.org/10.1175/jas-d-17-0095.1 Bui, H., Yoden, S., & Nishimoto, E. (2019). QBO-like Oscillation in a Three-Dimensional Minimal Model Framework of the Stratosphere–Troposphere Coupled System. SOLA, advpub, Article 2019-013. https://doi.org/10.2151/sola.2019-013 Chang, Y. H., Chen, W. T., Wu, C. M., Moseley, C., & Wu, C. C. (2021). Tracking the influence of cloud condensation nuclei on summer diurnal precipitating systems over complex topography in Taiwan. Atmos. Chem. Phys., 21(22), 16709-16725. https://doi.org/10.5194/acp-21-16709-2021 Chen, F., & Dudhia, J. (2001, 01 Apr. 2001). Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Monthly Weather Review, 129(4), 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:Caalsh>2.0.Co;2 Chen, W.-T., Wu, C.-M., Tsai, W.-M., Chen, P.-J., & Chen, P.-Y. (2019). Role of Coastal Convection to Moisture Buildup during the South China Sea Summer Monsoon Onset. Journal of the Meteorological Society of Japan. Ser. II, 97(6), 1155-1171, Article 2019-065. https://doi.org/10.2151/jmsj.2019-065 Chien, M.-H., & Wu, C.-M. (2016). Representation of topography by partial steps using the immersed boundary method in a vector vorticity equation model (VVM). Journal of Advances in Modeling Earth Systems, 8(1), 212-223. https://doi.org/https://doi.org/10.1002/2015MS000514 Giorgetta, M. A., Bengtsson, L., & Arpe, K. (1999, 1999/06/01). An investigation of QBO signals in the east Asian and Indian monsoon in GCM experiments. Climate Dynamics, 15(6), 435-450. https://doi.org/10.1007/s003820050292 Giorgetta, M. A., Manzini, E., & Roeckner, E. (2002). Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophysical Research Letters, 29(8), 86-81-86-84. https://doi.org/https://doi.org/10.1029/2002GL014756 Hayashi, Y. (1971). A generalized method of resolving disturbances into progressive and retrogressive waves by space Fourier and time cross-spectral analyses. Journal of the Meteorological Society of Japan. Ser. II, 49(2), 125-128. https://doi.org/https://doi.org/10.2151/jmsj1965.49.2_125 Held, I. M., Hemler, R. S., & Ramaswamy, V. (1993, 01 Dec. 1993). Radiative-Convective Equilibrium with Explicit Two-Dimensional Moist Convection. Journal of Atmospheric Sciences, 50(23), 3909-3927. https://doi.org/10.1175/1520-0469(1993)050<3909:Rcewet>2.0.Co;2 Holton, J. R., & Lindzen, R. S. (1972, 01 Sep. 1972). An Updated Theory for the Quasi-Biennial Cycle of the Tropical Stratosphere. Journal of Atmospheric Sciences, 29(6), 1076-1080. https://doi.org/10.1175/1520-0469(1972)029<1076:Autftq>2.0.Co;2 Huang, J.-D., & Wu, C.-M. (2020). Effects of Microphysical Processes on the Precipitation Spectrum in a Strongly Forced Environment. Earth and Space Science, 7(6), e2020EA001190. https://doi.org/https://doi.org/10.1029/2020EA001190 Huang, J.-D., & Wu, C.-M. (2022). A Framework to Evaluate Convective Aggregation: Examples With Different Microphysics Schemes. Journal of Geophysical Research: Atmospheres, 127(5), e2021JD035886. https://doi.org/https://doi.org/10.1029/2021JD035886 Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., & Collins, W. D. (2008). Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research: Atmospheres, 113(D13). https://doi.org/https://doi.org/10.1029/2008JD009944 Jung, J.-H., & Arakawa, A. (2008, 01 Jan. 2008). A Three-Dimensional Anelastic Model Based on the Vorticity Equation. Monthly Weather Review, 136(1), 276-294. https://doi.org/10.1175/2007mwr2095.1 Kim, H., Caron, J. M., Richter, J. H., & Simpson, I. R. (2020). The Lack of QBO-MJO Connection in CMIP6 Models. Geophysical Research Letters, 47(11), e2020GL087295. https://doi.org/https://doi.org/10.1029/2020GL087295 Kodera, K., Chiba, M., & Shibata, K. (1991). A general circulation model study of the solar and QBO modulation of the stratospheric circulation during the northern hemisphere winter. Geophysical Research Letters, 18(7), 1209-1212. https://doi.org/https://doi.org/10.1029/91GL01610 Kuo, K.-T., & Wu, C.-M. (2019). The Precipitation Hotspots of Afternoon Thunderstorms over the Taipei Basin: Idealized Numerical Simulations. Journal of the Meteorological Society of Japan. Ser. II, 97(2), 501-517, Article 2019-031. https://doi.org/10.2151/jmsj.2019-031 Lane, T. P., & Moncrieff, M. W. (2008, 01 Aug. 2008). Stratospheric Gravity Waves Generated by Multiscale Tropical Convection. Journal of the Atmospheric Sciences, 65(8), 2598-2614. https://doi.org/10.1175/2007jas2601.1 Lindzen, R. S., & Holton, J. R. (1968, 01 Nov. 1968). A Theory of the Quasi-Biennial Oscillation. Journal of Atmospheric Sciences, 25(6), 1095-1107. https://doi.org/10.1175/1520-0469(1968)025<1095:Atotqb>2.0.Co;2 Mills, M. J., Richter, J. H., Tilmes, S., Kravitz, B., MacMartin, D. G., Glanville, A. A., Tribbia, J. J., Lamarque, J.-F., Vitt, F., Schmidt, A., Gettelman, A., Hannay, C., Bacmeister, J. T., & Kinnison, D. E. (2017). Radiative and Chemical Response to Interactive Stratospheric Sulfate Aerosols in Fully Coupled CESM1(WACCM). Journal of Geophysical Research: Atmospheres, 122(23), 13,061-013,078. https://doi.org/https://doi.org/10.1002/2017JD027006 Morrison, H., & Milbrandt, J. A. (2015, 01 Jan. 2015). Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and Idealized Tests. Journal of the Atmospheric Sciences, 72(1), 287-311. https://doi.org/10.1175/jas-d-14-0065.1 Nishimoto, E., Yoden, S., & Bui, H.-H. (2016, 01 Jul. 2016). Vertical Momentum Transports Associated with Moist Convection and Gravity Waves in a Minimal Model of QBO-like Oscillation. Journal of the Atmospheric Sciences, 73(7), 2935-2957. https://doi.org/10.1175/jas-d-15-0265.1 Piani, C., Durran, D., Alexander, M. J., & Holton, J. R. (2000, 01 Nov. 2000). A Numerical Study of Three-Dimensional Gravity Waves Triggered by Deep Tropical Convection and Their Role in the Dynamics of the QBO. Journal of the Atmospheric Sciences, 57(22), 3689-3702. https://doi.org/10.1175/1520-0469(2000)057<3689:Ansotd>2.0.Co;2 Plumb, R. A. (1977, 01 Dec. 1977). The Interaction of Two Internal Waves with the Mean Flow: Implications for the Theory of the Quasi-Biennial Oscillation. Journal of Atmospheric Sciences, 34(12), 1847-1858. https://doi.org/10.1175/1520-0469(1977)034<1847:Tiotiw>2.0.Co;2 Robe, F. R., & Emanuel, K. A. (2001, 01 Jun. 2001). The Effect of Vertical Wind Shear on Radiative–Convective Equilibrium States. Journal of the Atmospheric Sciences, 58(11), 1427-1445. https://doi.org/10.1175/1520-0469(2001)058<1427:Teovws>2.0.Co;2 Rotunno, R., Klemp, J. B., & Weisman, M. L. (1988, 01 Feb. 1988). A Theory for Strong, Long-Lived Squall Lines. Journal of Atmospheric Sciences, 45(3), 463-485. https://doi.org/10.1175/1520-0469(1988)045<0463:Atfsll>2.0.Co;2 Shutts, G. J., & Gray, M. E. B. (1994). A numerical modelling study of the geostrophic adjustment process following deep convection. Quarterly Journal of the Royal Meteorological Society, 120(519), 1145-1178. https://doi.org/https://doi.org/10.1002/qj.49712051903 Taylor, M. J., Ryan, E. H., Tuan, T. F., & Edwards, R. (1993). Evidence of preferential directions for gravity wave propagation due to wind filtering in the middle atmosphere. Journal of Geophysical Research: Space Physics, 98(A4), 6047-6057. https://doi.org/https://doi.org/10.1029/92JA02604 Tsai, J.-Y., & Wu, C.-M. (2016, 2016/12/01/). Critical transitions of stratocumulus dynamical systems due to perturbation in free-atmosphere moisture. Dynamics of Atmospheres and Oceans, 76, 1-13. https://doi.org/https://doi.org/10.1016/j.dynatmoce.2016.08.002 Tsai, W.-M., & Wu, C.-M. (2017). The environment of aggregated deep convection. Journal of Advances in Modeling Earth Systems, 9(5), 2061-2078. https://doi.org/https://doi.org/10.1002/2017MS000967 Wu, C.-M., & Arakawa, A. (2011). Inclusion of Surface Topography into the Vector Vorticity Equation Model (VVM). Journal of Advances in Modeling Earth Systems, 3(2). https://doi.org/https://doi.org/10.1029/2011MS000061 Wu, C.-M., & Arakawa, A. (2014, 01 Jun. 2014). A Unified Representation of Deep Moist Convection in Numerical Modeling of the Atmosphere. Part II. Journal of the Atmospheric Sciences, 71(6), 2089-2103. https://doi.org/10.1175/jas-d-13-0382.1 Wu, C.-M., & Chen, P.-Y. (2021). Idealized cloud-resolving simulations of land-atmosphere coupling over tropical islands. Terrestrial, Atmospheric & Oceanic Sciences, 32(2), 191-202. https://doi.org/10.3319/TAO.2020.12.16.01 Wu, C.-M., Lin, H.-C., Cheng, F.-Y., & Chien, M.-H. (2019, 2019/11/01). Implementation of the Land Surface Processes into a Vector Vorticity Equation Model (VVM) to Study its Impact on Afternoon Thunderstorms over Complex Topography in Taiwan. Asia-Pacific Journal of Atmospheric Sciences, 55(4), 701-717. https://doi.org/10.1007/s13143-019-00116-x Wu, C.-M., Lo, M.-H., Chen, W.-T., & Lu, C.-T. (2015). The impacts of heterogeneous land surface fluxes on the diurnal cycle precipitation: A framework for improving the GCM representation of land-atmosphere interactions. Journal of Geophysical Research: Atmospheres, 120(9), 3714-3727. https://doi.org/https://doi.org/10.1002/2014JD023030 Yoden, S., Bui, H.-H., & Nishimoto, E. (2014). A Minimal Model of QBO-Like Oscillation in a Stratosphere-Troposphere Coupled System under a Radiative-Moist Convective Quasi-Equilibrium State. SOLA, 10, 112-116. https://doi.org/10.2151/sola.2014-023 Yoo, C., & Son, S.-W. (2016). Modulation of the boreal wintertime Madden-Julian oscillation by the stratospheric quasi-biennial oscillation. Geophysical Research Letters, 43(3), 1392-1398. https://doi.org/https://doi.org/10.1002/2016GL067762 Zhang, C., & Zhang, B. (2018). QBO-MJO Connection. Journal of Geophysical Research: Atmospheres, 123(6), 2957-2967. https://doi.org/https://doi.org/10.1002/2017JD028171 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84989 | - |
| dc.description.abstract | 本研究的目標是想瞭解對流與準兩年震盪在雲解析模式中的交互作用,特別針對準兩年震盪下,緯向風如何影響對流,以及對流引發的重力波如何影響准兩年震盪的發展。為了聚焦在對流與準兩年震盪的關係,Yoden等人(Yoden et al., 2014)利用了理想的雲解析模式當作模擬真實世界準兩年震盪動力的最小模式。我們參考了他們部分的實驗設計,利用三維的渦度方程雲解析模式進行模擬(Jung & Arakawa, 2008),為了讓對流的發展更為真實,我們也擴大了空間範圍(1024公里對比640公里)並提高空間上的解析度(2公里對比5公里)。 在我們的模擬中,前期的兩個震盪為西風極強的不對稱震盪,後期的兩個震盪發展則較為對稱。在研究不對稱震盪中東西風相位對流的差異時,我們發現在強上升對流雲數量上不太相同的兩種對流型態,其中一種是發生在強風切、高水氣環境下,逆風向前進的組織對流;另一種是在相位交替、風切弱與平均水氣低的環境中,發展成較為聚集的對流。聚集對流會產生比組織對流還要多的強上升對流雲並導致更快速的相位轉換,因此在兩種環境差異的影響下,產生了我們的模擬中看見的不對稱震盪現象。 | zh_TW |
| dc.description.abstract | This study investigates the interaction between convection and quasi-biennial oscillation (QBO) in an idealized cloud-resolving model. We focused on how zonal wind under QBO modulates the convection and how convectively generated gravity waves influence the evolution of QBO. To extract the critical interaction between QBO and convection, Yoden et al. (2014) used idealized cloud-resolving simulations as a minimal model for the dynamics of real-world QBO. Following their experiment setup, we use the three-dimensional vector-vorticity equation cloud-resolving model (VVM) (Jung & Arakawa, 2008) with extended horizontal domain size (1024 km vs. 640 km) and high horizontal resolution (2 km vs. 5 km) to evaluate the impact of convective variabilities to the QBO-like oscillation in the model. Our results show asymmetric oscillations with extremely strong westerly phases in the first two cycles and symmetric oscillations in the last two cycles. When exploring the difference in convection structures in asymmetric oscillations, we found two kinds of convective structures with different numbers of convective core clouds based on their convective structures. One is the organized convection which evolves upstream under strong vertical wind shear and high column water vapor in the domain. The other is the aggregated convection in the domain with weak vertical wind shear, and low averaged column water vapor, especially in the phase transition periods. The aggregated convection creates more convective core clouds than the organized convection leading to a faster transition of the QBO phases. Therefore, the difference between the two kinds of environments results in the asymmetric oscillation in our simulation. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:36:43Z (GMT). No. of bitstreams: 1 U0001-2208202211380400.pdf: 3266802 bytes, checksum: c3c27ca0e2d93fa9ddaa180694db7335 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 謝辭 i 摘要 ii Abstract iii 目錄 Contents v Figure Captions vi 1. Introduction 1 1.1. Quasi-biennial Oscillation 1 1.2. Cloud-resolving Models and Radiative-convective Equilibrium 2 1.3. Minimal QBO 3 1.4. Convection under the Shear Condition 4 2. Model Description, Experiment Setup, and Analyses Method 6 2.1. Vector-vorticity Equation Cloud-resolving Model (VVM) 6 2.2. Experiment Setup 7 2.3. Methodology 7 2.3.1. Definitions of Convective Cloud 7 2.3.2. Spectral Analysis 8 3. Results 11 3.1. Zonal Wind and Column Water Vapor 11 3.2. Organized Convection and Aggregated Convection 14 4. Discussion 18 4.1. Explanation of Wind Field Change 18 4.2. Role of Different Convection 21 5. Conclusion 23 References 26 Figures 32 Fig. 1. A snapshot of the 157th day and 8th hour in the simulation. The selected cross-section of (a) is shown by a gray dashed line in (c). (a) Shading is the vertical velocity of the selected cross-section. Arrows represent zonal and vertical wind velocity. The reference of arrow size in the upper right is for the zonal component of wind vectors. The vertical component is enlarged by the ratio of height and width in the plot. Green lines are the meridional ratio of the cloud. The ratio values are 0, 0.5, and 0.9, respectively, from light green to dark green. Cloud is defined by cloud water (qc)+cloud ice (qi)≥〖10〗^(-5) [kg∙kg^(-1)]. (b) The black line is the horizontal mean of zonal wind. The red line is the vertical shear of the black line. (c) Shading is the vertical wind speed at the level shown in the gray dashed line about 15 km in (a). Fig. 2. A snapshot of the 243rd day and 6th hour in the simulation. (a), (b), and (c) are the same as Fig. 1. Fig. 3. The feedback cycle of QBO-like oscillation and convection. Fig. 4. Hovmöller diagram of the whole simulated period. (a) The shading in the upper panel is the horizontal mean of zonal wind on each level. Solid gray lines are zero mean wind speed. (b) The black line is the mean of zonal wind under 15.9 [km] (dashed line in upper panel). Red and blue shading mean westerly and easterly phases, respectively. Westerly (easterly) phase is defined by wind speed higher (lower) than 1 (-1) [m/s]. Fig. 5. Hovmöller diagram of the whole simulated period. The shading is vertical shear of horizontal mean zonal wind in each level. Solid gray lines are zero vertical shears. The red and blue bars at the bottom are defined in Fig. 4b. Fig. 6. Occurrence frequency of different low-level (<5 km) vertical wind shear. Values of shear intensity are arranged by percentiles (0, 20, 40, 60, 80, 100) in the whole simulated time. The left (right) panel is the westerly (easterly) phases. Light (dark) color means the early (late) phase periods. Fig. 7. Hovmöller diagram of the whole simulated period. The shading is the meridional mean of column water vapor. The red and blue bars at the bottom are defined in Fig. 4b. Fig. 8. Phase diagram of column water vapor and low-level vertical wind shear (all are 5-day running mean). Each cycle starts from the beginning of the westerly phase and finishes at the end of the easterly phase. The red (blue) line means the westerly (easterly) phase period. Each phase is separated by light (early stage) and dark (late stage) colors. The number and size of convective clouds are demonstrated by the color and size of dots (unit is percentile in the whole simulated period). Cloud is defined by (cloud ice+cloud water)≥〖10〗^(-5) [kg∙kg^(-1)]. Convective clouds are defined by cloud bottom <= 1 [km] and cloud depth >= 1 [km]. Fig. 9. Snapshot in strong shear period (at the 145th day and 6th hour). The selected cross-section is shown by the gray dashed line in (c). (a) and (b) are the same as Fig. 1. (c) Shading is column water vapor. Red lines mean precipitation rate equals 1 [mm/hr]. Fig. 10. The diagrams zoomed in on the first westerly phase. (a) Hovmöller diagram of meridional mean precipitation rate. White region means precipitation rate lower than 0.5 [mm/hr]. (b) The gray line is vertical wind shear under 5 km. The blue line is the horizontal mean column water vapor. Two variables are taken 1-day running mean. Vertically red and blue lines in two panels mean the boundary of the westerly phase and easterly phase, respectively. Red and blue bars at the bottom are westerly and easterly phases defined in Fig. 4b. Fig. 11. Time series of the number of convective core cloud (blue) and spatial standard deviation of column water vapor (red) (all are 5-day running mean). Red and blue bars at the bottom are westerly and easterly phases defined in Fig. 4b. Fig. 12. Snapshot in weak shear period (at the 231st day and 5th hour). (a), (b) and (c) are the same as Fig. 9. Fig. 13. Cospectra of zonal wind and vertical wind in two days. Black lines are mean zonal wind velocity. The red (blue) color represents the phase speed spectra of the vertical flux of positive (negative) momentum (ρ_air (u'w') ̅) [kg∙m^(-1)∙s^(-2)/(m∙s^(-1))]. (a) to (h) involve two days of data, respectively. The beginning days are (a)110day00hr, (b)125day17hr, (c)141day10hr, (d)157day03hr, (e)172day20hr, (f)188day13hr, (g)204day06hr, and (h)220day00hr. Fig. 14. A cycle of zonal wind oscillation and schematic gravity waves. Black solid lines represent zonal wind at each time. Black dashed lines are the reference of zero zonal wind for each time. Colored regions are zonal wind differences from last time. Red (blue) regions are the positive (negative) differences. Red (blue) lines represent gravity waves that propagate eastward (westward) and contain positive (negative) momentum flux. Fig. 15. The schematic diagram of effects of weak and strong vertical wind shear under QBO. | |
| dc.language.iso | en | |
| dc.subject | 對流引發重力波 | zh_TW |
| dc.subject | 雲解析模式 | zh_TW |
| dc.subject | 垂直風切 | zh_TW |
| dc.subject | 聚集對流 | zh_TW |
| dc.subject | 準兩年震盪 | zh_TW |
| dc.subject | 組織對流 | zh_TW |
| dc.subject | cloud-resolving model | en |
| dc.subject | vertical wind shear | en |
| dc.subject | convectively generated gravity waves | en |
| dc.subject | aggregated convection | en |
| dc.subject | organized convection | en |
| dc.subject | quasi-biennial oscillation | en |
| dc.title | 以對流建構準兩年震盪簡化模型 | zh_TW |
| dc.title | The Role of Convection in a Minimal Model of QBO-like Oscillation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳維婷(Wei-Ting Chen),隋中興(Chung-Hsiung Sui),蘇世顥(Shih-Hao Su),蘇俊彥(Chun-Yian Su) | |
| dc.subject.keyword | 準兩年震盪,雲解析模式,組織對流,聚集對流,對流引發重力波,垂直風切, | zh_TW |
| dc.subject.keyword | quasi-biennial oscillation,cloud-resolving model,organized convection,aggregated convection,convectively generated gravity waves,vertical wind shear, | en |
| dc.relation.page | 44 | |
| dc.identifier.doi | 10.6342/NTU202202636 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-22 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-24 | - |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2208202211380400.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
