Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84975
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡政安
dc.contributor.authorJou-Hsuan Chenen
dc.contributor.author陳柔瑄zh_TW
dc.date.accessioned2023-03-19T22:35:55Z-
dc.date.copyright2022-08-31
dc.date.issued2021
dc.date.submitted2022-08-22
dc.identifier.citationAhluwalia, T. S., et al. (2011). 'Uromodulin gene variant is associated with type 2 diabetic nephropathy.' Journal of hypertension 29(9): 1731-1734. Chang, A. S., et al. (2016). 'Transforming growth factor-β1 and diabetic nephropathy.' American Journal of Physiology-Renal Physiology 310(8): F689-F696. Darling, N. J. and S. J. Cook (2014). 'The role of MAPK signalling pathways in the response to endoplasmic reticulum stress.' Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1843(10): 2150-2163. Deshmukh, H. A., et al. (2021). 'Genome-wide association analysis of pancreatic beta-cell glucose sensitivity.' The Journal of Clinical Endocrinology & Metabolism 106(1): 80-90. Du, Y., et al. (2010). 'Effects of p38 MAPK inhibition on early stages of diabetic retinopathy and sensory nerve function.' Investigative ophthalmology & visual science 51(4): 2158-2164. Duncan, L. E., et al. (2019). 'How genome-wide association studies (GWAS) made traditional candidate gene studies obsolete.' Neuropsychopharmacology 44(9): 1518-1523. Flannick, J., et al. (2014). 'Loss-of-function mutations in SLC30A8 protect against type 2 diabetes.' Nature genetics 46(4): 357-363. Fuchsberger, C., et al. (2016). 'The genetic architecture of type 2 diabetes.' Nature 536(7614): 41-47. Hirosumi, J., et al. (2002). 'A central role for JNK in obesity and insulin resistance.' Nature 420(6913): 333-336. Horikawa, Y., et al. (2008). 'Replication of genome-wide association studies of type 2 diabetes susceptibility in Japan.' The Journal of Clinical Endocrinology & Metabolism 93(8): 3136-3141. Howie, B., et al. (2012). 'Fast and accurate genotype imputation in genome-wide association studies through pre-phasing.' Nature genetics 44(8): 955-959. Jhala, U. S., et al. (2003). 'cAMP promotes pancreatic β-cell survival via CREB-mediated induction of IRS2.' Genes & development 17(13): 1575-1580. KANOJIA, S., et al. (2021). '1247-P: The SND1 Coregulator Controls ß-Cell Function and Identity.' Diabetes 70(Supplement_1). Kido, T., et al. (2018). 'Are minor alleles more likely to be risk alleles?' BMC medical genomics 11(1): 1-11. Kikuchi, D., et al. (2016). 'CREB is activated by ER stress and modulates the unfolded protein response by regulating the expression of IRE1α and PERK.' Biochemical and biophysical research communications 469(2): 243-250. Kim, J., et al. (2014). 'Amyloidogenic peptide oligomer accumulation in autophagy-deficient β cells induces diabetes.' The Journal of clinical investigation 124(8): 3311-3324. Koga, Y., et al. (2019). 'Roles of cyclic AMP response element binding activation in the ERK1/2 and p38 MAPK signalling pathway in central nervous system, cardiovascular system, osteoclast differentiation and mucin and cytokine production.' International journal of molecular sciences 20(6): 1346. Lee, H., et al. (2011). 'Endoplasmic reticulum stress-induced JNK activation is a critical event leading to mitochondria-mediated cell death caused by β-lapachone treatment.' PloS one 6(6): e21533. Lee, S., et al. (2014). 'Rare-variant association analysis: study designs and statistical tests.' The American Journal of Human Genetics 95(1): 5-23. Møller, L. L. V., et al. (2019). 'Rho GTPases—Emerging Regulators of Glucose Homeostasis and Metabolic Health.' Cells 8(5): 434. Nøhr, A. C., et al. (2017). 'The GPR139 reference agonists 1a and 7c, and tryptophan and phenylalanine share a common binding site.' Scientific reports 7(1): 1-9. Nogueira, T. C., et al. (2013). 'GLIS3, a susceptibility gene for type 1 and type 2 diabetes, modulates pancreatic beta cell apoptosis via regulation of a splice variant of the BH3-only protein Bim.' PLoS genetics 9(5): e1003532. Pantelis, C., et al. (2014). 'Biological insights from 108 schizophrenia-associated genetic loci.' Nature 511(7510): 421-427. Polfus, L. M., et al. (2021). 'Genetic discovery and risk characterization in type 2 diabetes across diverse populations.' Human Genetics and Genomics Advances 2(2): 100029. Rees, S. D., et al. (2011). 'Effects of 16 genetic variants on fasting glucose and type 2 diabetes in South Asians: ADCY5 and GLIS3 variants may predispose to type 2 diabetes.' PloS one 6(9): e24710. Saeedi, P., et al. (2019). 'Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas.' Diabetes research and clinical practice 157: 107843. Scoville, D. W. and A. M. Jetten (2021). 'GLIS3: A Critical Transcription Factor in Islet β-Cell Generation.' Cells 10(12): 3471. Sulaiman, N., et al. (2022). 'EXOC6 (Exocyst Complex Component 6) Is Associated with the Risk of Type 2 Diabetes and Pancreatic β-Cell Dysfunction.' Biology 11(3): 388. Toren, E., et al. (2021). 'The SSBP3 Co-Regulator is a Novel Driver of Islet Cell Structure and Function.' The FASEB Journal 35. Visscher, P. M., et al. (2017). '10 years of GWAS discovery: biology, function, and translation.' The American Journal of Human Genetics 101(1): 5-22. Wang, S., et al. (2016). 'The role of p38 MAPK in the development of diabetic cardiomyopathy.' International journal of molecular sciences 17(7): 1037. Wang, Y.-H., et al. (2022). 'Golgin Imh1 and GARP complex cooperate to restore the impaired SNARE recycling transport induced by ER stress.' Cell Reports 38(12): 110488. Wu, M. C., et al. (2011). 'Rare-variant association testing for sequencing data with the sequence kernel association test.' The American Journal of Human Genetics 89(1): 82-93. Wu, Y., et al. (2008). 'Common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE genes are associated with type 2 diabetes and impaired fasting glucose in a Chinese Han population.' Diabetes 57(10): 2834-2842. Xu, Y., et al. (2019). 'Model-based clustering for identifying disease-associated SNPs in case-control genome-wide association studies.' Scientific reports 9(1): 1-10.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84975-
dc.description.abstract糖尿病在台灣盛行率高,且在不同族群中的致病基因並不完全一致,因此針對台灣族群進行GWAS研究,尋找台灣族群未知的糖尿病致病基因能提供治療及預防台灣族群糖尿病的新方向。 本文嘗試結合模型導向分群法 (Model-based clustering) 與序列核關聯檢定 (Sequence Kernel Association Test, SKAT) 分析全基因體資料。模擬資料分析結果顯示兩者對次要等位基因頻率 (minor allele frequency, MAF) 大於0.05的致病變異都有大於0.75的檢定力,所需計算時間差異不大。模型導向分群法對於罕見致病變異(MAF<0.05)的資料檢定力較低,而SKAT可以調整參數達到極高的檢定力。 從台灣人體生物資料庫經品質控管的資料挑選出4453位糖尿病患者與隨機挑選17812位未患病者為控制組,同時使用兩種檢定方法分析,嘗試尋找台灣族群糖尿病的未知基因。模型導向分群法共找到338個變異位點(FDR=0.05);SKAT檢定出197個30kb的片段(p值<0.001)。兩方法重疊的顯著片段或變異位點皆為最顯著前幾名基因,而這些基因都是已知的糖尿病基因,與之前對於亞洲族群的GWAS研究結果相似。模型導向分群法與SKAT有一些顯著的變異位點或片段雖不重疊,但基因功能上卻與糖尿病相關,可能為致病基因。這些基因大致分成內質網壓力相關基因、胰島β細胞功能或胰島素相關基因、糖尿病併發症相關的基因。內質網壓力在糖尿病發展上扮演重要角色,能誘發未摺疊蛋白反應 (unfolded protein response, UPR) 與高基氏體逆向運輸等機制。與UPR及高基氏體逆向運輸相關的兩個基因內的變異可能是細胞無法順利解除內質網壓力的一部份原因。影響胰島β細胞功能或胰島素十個相關基因所涉及的生理機制眾多,顯示糖尿病的複雜性,而因為這樣的複雜所以糖尿病遺傳力在不同研究中變化很大。糖尿病併發症相關的兩個基因可能成為研究糖尿病性心肌病新的方向;UMOD及TGFBRAP1與糖尿病腎臟病變的關聯能幫助了解台灣族群的糖尿病腎臟病變機制。zh_TW
dc.description.abstractIn the past decades, studies have shown a marked increase in the prevalence of diabetes in Taiwan. The risk of diabetes exhibits population-specific causal relationships with environmental and genetic factors. Genome-wide association studies (GWAS) aims to test significant associations between a specific disease and genetic variants in human genome. So far, GWAS has successfully identified a number of associated variants responsible for type 2 diabetes. Such findings are important to provide guidelines for diabetes disease prevention and control in public health policy. In this study, we performed a GWAS for identification of SNPs that may be associated with type 2 diabetes via two methods, Model-based clustering and Sequence Kernel Association Test (SKAT). Results of simulation studies show that the powers of both statistical approaches are higher than 0.75 when minor allele frequencies (MAFs) of disease-associated single-nucleotide polymorphisms (SNPs) are higher than 0.05. There is no much difference of computation time between the two approaches. When MAFs of SNPs are lower than 0.05, the power of Model-based clustering method is lower and SKAT can remain high power performance by tuning parameters. A total of 4453 type 2 diabetes (T2D) patients were collected at the Taiwan Biobank dataset with a medical history and a total of 17812 controls were randomly selected from the non-diabetes subjects. Both model-based clustering and Sequence Kernel Association Test (SKAT) methods are applied to the dataset for identification of novel genes targeting the specific Taiwan population. As a result, the model-based clustering method identified 338 significant SNPs with controlling the FDR at 5%, and 197 regions of 30 kb were declared to be significant by SKAT at p-values < 0.001. Most of the overlap in significantly associated SNPs between two GWAS methods have been identified as T2D susceptibility genes and validated by several GWAS results for the Asian population. For those non-overlapping significant SNPs and loci, we attempted to verify their functionality via gene annotation. These genes consisted of endoplasmic reticulum (ER) stress related genes, β cell and insulin related genes, as well as diabetes complications related genes. ER stress which plays an important role in diabetes development induces the unfolded protein response (UPR) and retrograde transport from the Golgi to the ER. Variants in UPR and retrograde transport related genes could be part of the reasons that cells can’t release ER stress. Ten β cell and insulin related genes are simultaneously involved in many pathways, explaining the complexity of diabetes. Such complexity may lead to the heritability variation across diabetes studies. Our analysis revealed two potential genetic variants, UMOD and TGFBRAP1, showing significant association with diabetes complications. Our findings provide an insight into the diabetic nephropathy and these candidate SNPs might be valuable for future study in the development of type 2 diabetes complications in Taiwan population.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:35:55Z (GMT). No. of bitstreams: 1
U0001-1908202210373900.pdf: 1697924 bytes, checksum: e6850294238fcd27fcdd58f1512343e3 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents誌謝 i 中文摘要 ii ABSTRACT iv 目錄 vi 表目錄 viii 圖目錄 ix 第一章 前言 1 1.1 研究背景 1 1.2 文獻回顧 3 1.2.1 全基因體關聯分析 3 1.2.2 糖尿病的全基因體關聯分析 3 第二章 方法 5 2.1 模型導向分群法 5 2.2 序列核關聯檢定 (SKAT) 8 第三章 模擬分析 11 3.1 模擬資料 11 3.2 模擬分析結果 16 第四章 臺灣人體生物資料庫分析 20 4.1 資料介紹 20 4.2 分析結果 20 第五章 討論 30 5.1 結果討論 30 5.2 研究限制與建議 30 第六章 結論與展望 32 第七章 資料處理與參數設定 33 7.1 資料品質控管與處理 33 7.2 流程與參數設定 34 參考文獻 35 附錄 38 C.1 模擬資料參數設定 38 C.2 模型導向分群法分析顯著的變異位點名稱、位置、所在基因與後驗機率 39 C.3 SKAT分析顯著的片段起始位置、重疊基因與p值 49
dc.language.isozh-TW
dc.subject序列核關聯檢定zh_TW
dc.subject全基因體關聯性研究zh_TW
dc.subject糖尿病zh_TW
dc.subject模型導向分群法zh_TW
dc.subjectSKATen
dc.subjectDiabetesen
dc.subjectModel-based clusteringen
dc.subjectGWASen
dc.title以臺灣人體生物資料庫探勘糖尿病未知基因之全基因體關聯性研究zh_TW
dc.titleIdentification of Novel Genes for Diabetes Using Taiwan Biobank Dataen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee梁文敏,陳錦華
dc.subject.keyword全基因體關聯性研究,糖尿病,模型導向分群法,序列核關聯檢定,zh_TW
dc.subject.keywordGWAS,SKAT,Model-based clustering,Diabetes,en
dc.relation.page54
dc.identifier.doi10.6342/NTU202202572
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-22
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
dc.date.embargo-lift2022-08-31-
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
U0001-1908202210373900.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved