請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84961完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林璧鳳(Bi-Fong Lin) | |
| dc.contributor.author | Li-Fen Chen | en |
| dc.contributor.author | 陳立芬 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:35:05Z | - |
| dc.date.copyright | 2022-08-26 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-23 | |
| dc.identifier.citation | 黃薰儀. 2019. ‘探討gamma-胺基丁酸對VHL基因剔除小鼠腎臟病與免疫調節的影響’ 衛生福利部國民健康署. 2019. “中華民國108年癌症登記報告” 衛生福利部中央健康保險署. 2021. “2020年全民健康保險醫療費用前二十大疾病” Akhtar M, Taha NM, Nauman A, Mujeeb IB, Al-Nabet ADMH. Diabetic Kidney Disease: Past and Present. Adv Anat Pathol. (2020); 27(2):87-97. doi: 10.1097/PAP.0000000000000257. Alicic RZ, Rooney MT, Tuttle KR. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clin J Am Soc Nephrol. (2017); 12(12):2032-2045. doi: 10.2215/CJN.11491116. Allen DA, Harwood S, Varagunam M, Raftery MJ, Yaqoob MM. High glucose-induced oxidative stress causes apoptosis in proximal tubular epithelial cells and is mediated by multiple caspases. FASEB J. (2003); 17(8):908-10. doi: 10.1096/fj.02-0130fje. Aoyama M, Isshiki K, Kume S, Chin-Kanasaki M, Araki H, Araki S, Koya D, Haneda M, Kashiwagi A, Maegawa H, Uzu T. Fructose induces tubulointerstitial injury in the kidney of mice. Biochem Biophys Res Commun. (2012); 419(2):244-9. doi: 10.1016/j.bbrc.2012.02.001. Baran P, Hansen S, Waetzig GH, Akbarzadeh M, Lamertz L, Huber HJ, Ahmadian MR, Moll JM, Scheller J. The balance of interleukin (IL)-6, IL-6·soluble IL-6 receptor (sIL-6R), and IL-6·sIL-6R·sgp130 complexes allows simultaneous classic and trans-signaling. J Biol Chem. (2018); 293(18):6762-6775. doi: 10.1074/jbc.RA117.001163. Bermejo F, Algaba A, Guerra I, Chaparro M, De-La-Poza G, Valer P, Piqueras B, Bermejo A, García-Alonso J, Pérez MJ, Gisbert JP. Should we monitor vitamin B12 and folate levels in Crohn's disease patients? Scand J Gastroenterol. (2013); 48(11):1272-7. doi: 10.3109/00365521.2013.836752. Birn H. The kidney in vitamin B12 and folate homeostasis: characterization of receptors for tubular uptake of vitamins and carrier proteins. Am J Physiol Renal Physiol. (2006); 291(1):F22-36. doi: 10.1152/ajprenal.00385.2005. Björkman O, Felig P. Role of the kidney in the metabolism of fructose in 60-hour fasted humans. Diabetes. (1982); 31(6 Pt 1):516-20. doi: 10.2337/diab.31.6.516. Bonventre JV. Can we target tubular damage to prevent renal function decline in diabetes? Semin Nephrol. (2012); 32(5):452-62. doi: 10.1016/j.semnephrol.2012.07.008. Bray GA. Soft drink consumption and obesity: it is all about fructose. Curr Opin Lipidol. (2010); 21(1):51-7. doi: 10.1097/MOL.0b013e3283346ca2. Cengiz K. Increased incidence of neoplasia in chronic renal failure (20-year experience). Int Urol Nephrol. (2002); 33(1):121-6. doi: 10.1023/a:1014489911153. Chadban SJ, Atkins RC. Glomerulonephritis. Lancet. (2005); 21-27;365(9473):1797-806. doi: 10.1016/S0140-6736(05)66583-X. Chan CW, Chan PH, Lin BF. Folate Deficiency Increased Lipid Accumulation and Leptin Production of Adipocytes. Front Nutr. (2022); 25;9:852451. doi: 10.3389/fnut.2022.852451. Charles C, Ferris AH. Chronic Kidney Disease. Prim Care. (2020); 47(4):585-595. doi: 10.1016/j.pop.2020.08.001. Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. (2019); 92:6-10. doi: 10.1016/j.metabol.2018.09.005. Choueiri TK, Fay AP, Gagnon R, Lin Y, Bahamon B, Brown V, Rosenberg JE, Hutson TE, Baker-Neblett KL, Carpenter C, Liu Y, Pandite L, Signoretti S. The role of aberrant VHL/HIF pathway elements in predicting clinical outcome to pazopanib therapy in patients with metastatic clear-cell renal cell carcinoma. Clin Cancer Res. (2013); 19(18):5218-26. doi: 10.1158/1078-0432.CCR-13-0491. Choueiri TK, Kaelin WG Jr. Targeting the HIF2-VEGF axis in renal cell carcinoma. Nat Med. (2020); 26(10):1519-1530. doi: 10.1038/s41591-020-1093-z. Christensson A, Savage C, Sjoberg DD, Cronin AM, O'Brien MF, Lowrance W, Nilsson PM, Vickers AJ, Russo P, Lilja H. Association of cancer with moderately impaired renal function at baseline in a large, representative, population-based cohort followed for up to 30 years. Int J Cancer. (2013); 133(6):1452-8. doi: 10.1002/ijc.28144. Cirillo P, Gersch MS, Mu W, Scherer PM, Kim KM, Gesualdo L, Henderson GN, Johnson RJ, Sautin YY. Ketohexokinase-dependent metabolism of fructose induces proinflammatory mediators in proximal tubular cells. J Am Soc Nephrol. (2009); 20(3):545-53. doi: 10.1681/ASN.2008060576. Coughlan MT, Thorburn DR, Penfold SA, Laskowski A, Harcourt BE, Sourris KC, Tan AL, Fukami K, Thallas-Bonke V, Nawroth PP, Brownlee M, Bierhaus A, Cooper ME, Forbes JM. RAGE-induced cytosolic ROS promote mitochondrial superoxide generation in diabetes. J Am Soc Nephrol. 2009 Apr;20(4):742-52. doi: 10.1681/ASN.2008050514. Czeizel AE, Dudás I, Paput L, Bánhidy F. Prevention of neural-tube defects with periconceptional folic acid, methylfolate, or multivitamins? Ann Nutr Metab. (2011); 58(4):263-71. doi: 10.1159/000330776. Dzhalilova DS, Makarova OV. HIF-Dependent Mechanisms of Relationship between Hypoxia Tolerance and Tumor Development. Biochemistry (Mosc). (2021); 86(10):1163-1180. doi: 10.1134/S0006297921100011. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. (2001); 411(6836):494-8. doi: 10.1038/35078107. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. (2007); 35(4):495-516. doi: 10.1080/01926230701320337. Elsborg L, Larsen L. Folate deficiency in chronic inflammatory bowel diseases. Scand J Gastroenterol. (1979); 14(8):1019-24. Farhadnejad H, Asghari G, Mirmiran P, Yuzbashian E, Azizi F. Micronutrient Intakes and Incidence of Chronic Kidney Disease in Adults: Tehran Lipid and Glucose Study. Nutrients. (2016); 8(4):217. doi: 10.3390/nu8040217. Feng D, Zhou Y, Xia M, Ma J. Folic acid inhibits lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages by suppressing MAPKs and NF-κB activation. Inflamm Res. (2011); 60(9):817-22. doi: 10.1007/s00011-011-0337-2. Ferraris RP, Choe JY, Patel CR. Intestinal Absorption of Fructose. Annu Rev Nutr. (2018); 38:41-67. doi: 10.1146/annurev-nutr-082117-051707. Fioretto P, Mauer M. Histopathology of diabetic nephropathy. Semin Nephrol. (2007); 27(2):195-207. doi: 10.1016/j.semnephrol.2007.01.012. Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. (2013); 93(1):137-88. doi: 10.1152/physrev.00045.2011. Froesch ER, Ginsberg JL. Fructose metabolism of adipose tissue. I. Comparison of fructose and glucose metabolism in epididymal adipose tissue of normal rats. J Biol Chem. (1962); 237:3317-24. Gao J, Chen QQ, Huang Y, Li KH, Geng XJ, Wang T, Lin QS, Yao RS. Design, Synthesis and Pharmacological Evaluation of Naphthofuran Derivatives as Potent SIRT1 Activators. Front Pharmacol. (2021); 12:653233. doi: 10.3389/fphar.2021.653233. Gavrilov K, Saltzman WM. Therapeutic siRNA: principles, challenges, and strategies. Yale J Biol Med. (2012); 85(2):187-200. Gou R, Chen J, Sheng S, Wang R, Fang Y, Yang Z, Wang L, Tang L. KIM-1 Mediates High Glucose-Induced Autophagy and Apoptosis in Renal Tubular Epithelial Cells. Cell Physiol Biochem. (2016); 38(6):2479-88. doi: 10.1159/000445598. Gersch MS, Mu W, Cirillo P, Reungjui S, Zhang L, Roncal C, Sautin YY, Johnson RJ, Nakagawa T. Fructose, but not dextrose, accelerates the progression of chronic kidney disease. Am J Physiol Renal Physiol. (2007); 293(4):F1256-61. doi: 10.1152/ajprenal.00181.2007. Greene ND, Copp AJ. Neural tube defects. Annu Rev Neurosci. (2014); 37:221-42. doi: 10.1146/annurev-neuro-062012-170354. Gropper SS, Smith JL, Groff JL. Advanced nutrition and human metabolism (4th ed.). (2005); CENGAGE Learning Custom Publishing. Gu TT, Chen TY, Yang YZ, Zhao XJ, Sun Y, Li TS, Zhang DM, Kong LD. Pterostilbene alleviates fructose-induced renal fibrosis by suppressing TGF-β1/TGF-β type I receptor/Smads signaling in proximal tubular epithelial cells. Eur J Pharmacol. (2019); 842:70-78. doi: 10.1016/j.ejphar.2018.10.008. Haller H, Bertram A, Nadrowitz F, Menne J. Monocyte chemoattractant protein-1 and the kidney. Curr Opin Nephrol Hypertens. (2016); 25(1):42-9. doi: 10.1097/MNH.0000000000000186. Han M, Pan Y, Gao M, Zhang J, Wang F. JNK Signaling Pathway Suppresses LPS-Mediated Apoptosis of HK-2 Cells by Upregulating NGAL. Int J Inflam. (2020); 2020:3980507. doi: 10.1155/2020/3980507. Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. (2002); 62(1):237-44. doi: 10.1046/j.1523-1755.2002.00433.x. Huang HY., Hsu T, Lin BF. Gamma-aminobutyric acid decreases macrophages infiltration and suppresses inflammatory responses in renal injury. Journal of Functional Foods, (2019); 60, 103419. Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol. (2015); 16(5):448-57. doi: 10.1038/ni.3153. Erratum in: Nat Immunol. 2017 Oct 18;18(11):1271. Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL, Sanicola M. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem. (1998); 273(7):4135-42. doi: 10.1074/jbc.273.7.4135. Jefferson JA, Shankland SJ, Pichler RH. Proteinuria in diabetic kidney disease: a mechanistic viewpoint. Kidney Int. (2008); 74(1):22-36. doi: 10.1038/ki.2008.128. Jenkin KA, McAinch AJ, Zhang Y, Kelly DJ, Hryciw DH. Elevated cannabinoid receptor 1 and G protein-coupled receptor 55 expression in proximal tubule cells and whole kidney exposed to diabetic conditions. Clin Exp Pharmacol Physiol. (2015); 42(3):256-62. doi: 10.1111/1440-1681.12355. Jensen T, Abdelmalek MF, Sullivan S, Nadeau KJ, Green M, Roncal C, Nakagawa T, Kuwabara M, Sato Y, Kang DH, Tolan DR, Sanchez-Lozada LG, Rosen HR, Lanaspa MA, Diehl AM, Johnson RJ. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J Hepatol. (2018); 68(5):1063-1075. doi: 10.1016/j.jhep.2018.01.019. Jones SA, Fraser DJ, Fielding CA, Jones GW. Interleukin-6 in renal disease and therapy. Nephrol Dial Transplant. (2015); 30(4):564-74. doi: 10.1093/ndt/gfu233. Joyce E, Glasner P, Ranganathan S, Swiatecka-Urban A. Tubulointerstitial nephritis: diagnosis, treatment, and monitoring. Pediatr Nephrol. (2017); 32(4):577-587. doi: 10.1007/s00467-016-3394-5. Kalli KR, Oberg AL, Keeney GL, Christianson TJ, Low PS, Knutson KL, Hartmann LC. Folate receptor alpha as a tumor target in epithelial ovarian cancer. Gynecol Oncol. (2008); 108(3):619-26. doi: 10.1016/j.ygyno.2007.11.020. Kim TK, Eberwine JH. Mammalian cell transfection: the present and the future. Anal Bioanal Chem. (2010); 397(8):3173-8. doi: 10.1007/s00216-010-3821-6. Koeppen BM, Stanton BA. Renal physiology, fifth edition. Philadelphia, PA : Elsevier Mosby. (2013) Kolb AF, Petrie L. Folate deficiency enhances the inflammatory response of macrophages. Mol Immunol. (2013); 54(2):164-72. doi: 10.1016/j.molimm.2012.11.012. Krupenko SA, Oleinik NV. 10-formyltetrahydrofolate dehydrogenase, one of the major folate enzymes, is down-regulated in tumor tissues and possesses suppressor effects on cancer cells. Cell Growth Differ. (2002); 13(5):227-36. Lakkis JI, Weir MR. Obesity and Kidney Disease. Prog Cardiovasc Dis. (2018); 61(2):157-167. doi: 10.1016/j.pcad.2018.07.005. Lan HY, Chung ACK. Transforming growth factor-β and Smads. Contrib Nephrol. (2011); 170:75-82. doi: 10.1159/000324949. Lee IS, Shin G, Choue R. Shifts in diet from high fat to high carbohydrate improved levels of adipokines and pro-inflammatory cytokines in mice fed a high-fat diet. Endocr J. (2010); 57(1):39-50. doi: 10.1507/endocrj.k09e-046. Lee J, Oh KH, Park SK. Dietary Micronutrients and Risk of Chronic Kidney Disease: A Cohort Study with 12 Year Follow-Up. Nutrients. (2021); 13(5):1517. doi: 10.3390/nu13051517. Lee WC, Chiu CH, Chen JB, Chen CH, Chang HW. Mitochondrial Fission Increases Apoptosis and Decreases Autophagy in Renal Proximal Tubular Epithelial Cells Treated with High Glucose. DNA Cell Biol. (2016); 35(11):657-665. doi: 10.1089/dna.2016.3261. Levey AS, James MT. Acute Kidney Injury. Ann Intern Med. (2017) ; 167(9):ITC66-ITC80. doi: 10.7326/AITC201711070. Erratum in: Ann Intern Med. 2018 Jan 2;168(1):84. Levey AS. Defining AKD: The Spectrum of AKI, AKD, and CKD. Nephron. (2022); 146(3):302-305. doi: 10.1159/000516647. Lichtman MK, Otero-Vinas M, Falanga V. Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis. Wound Repair Regen. (2016); 24(2):215-22. doi: 10.1111/wrr.12398. Linehan WM, Schmidt LS, Crooks DR, Wei D, Srinivasan R, Lang M, Ricketts CJ. The Metabolic Basis of Kidney Cancer. Cancer Discov. (2019); 9(8):1006-1021. doi: 10.1158/2159-8290.CD-18-1354. Lisboa JVC, Ribeiro MR, Luna RCP, Lima RPA, Nascimento RAFD, Monteiro MGCA, Lima KQF, Fechine CPNDS, Oliveira NFP, Persuhn DC, Veras RC, Gonçalves MDCR, Ferreira FELL, Lima RT, Silva ASD, Diniz ADS, Almeida ATC, Moraes RM, Junior EV, Costa MJC. Food Intervention with Folate Reduces TNF-α and Interleukin Levels in Overweight and Obese Women with the MTHFR C677T Polymorphism: A Randomized Trial. Nutrients. (2020); 12(2):361. doi: 10.3390/nu12020361. Liu BC, Tang TT, Lv LL, Lan HY. Renal tubule injury: a driving force toward chronic kidney disease. Kidney Int. (2018); 93(3):568-579. doi: 10.1016/j.kint.2017.09.033. Loeffler I, Wolf G. Transforming growth factor-β and the progression of renal disease. Nephrol Dial Transplant. (2014); 29 Suppl 1:i37-i45. doi: 10.1093/ndt/gft267. Lote, C. J., & Lote, C. J. (1994). Principles of renal physiology (No. QP211 L88 1994). London ; New York : Chapman & Hall. (1994) Lv L, Zhang J, Tian F, Li X, Li D, Yu X. Arbutin protects HK-2 cells against high glucose-induced apoptosis and autophagy by up-regulating microRNA-27a. Artif Cells Nanomed Biotechnol. (2019); 47(1):2940-2947. doi: 10.1080/21691401.2019.1640231. Macdonald I, Keyser A, Pacy D. Some effects, in man, of varying the load of glucose, sucrose, fructose, or sorbitol on various metabolites in blood. Am J Clin Nutr. (1978); 31(8):1305-11. doi: 10.1093/ajcn/31.8.1305. Matas AJ, Simmons RL, Kjellstrand CM, Buselmeier TJ, Najarian JS. Increased incidence of malignancy during chronic renal failure. Lancet. (1975); 1(7912):883-6. doi: 10.1016/s0140-6736(75)91684-0. Mentch SJ, Locasale JW. One-carbon metabolism and epigenetics: understanding the specificity. Ann N Y Acad Sci. (2016); 1363(1):91-8. doi: 10.1111/nyas.12956. Mirtschink P, Jang C, Arany Z, Krek W. Fructose metabolism, cardiometabolic risk, and the epidemic of coronary artery disease. Eur Heart J. (2018); 39(26):2497-2505. doi: 10.1093/eurheartj/ehx518. Moein S, Vaghari-Tabari M, Qujeq D, Kashifard M, Shokri-Shirvani J, Hajian-Tilaki K. Association between serum folate with inflammatory markers, disease clinical activity and serum homocysteine in patients with inflammatory bowel disease. Does folate level have an effect on maintaining clinical remission? Acta Biomed. (2020); 91(4):e2020106. doi: 10.23750/abm.v91i4.8467. Moll S, Varga EA. Homocysteine and MTHFR Mutations. Circulation. (2015); 132(1):e6-9. doi: 10.1161/CIRCULATIONAHA.114.013311. Mori Y, Ajay AK, Chang JH, Mou S, Zhao H, Kishi S, Li J, Brooks CR, Xiao S, Woo HM, Sabbisetti VS, Palmer SC, Galichon P, Li L, Henderson JM, Kuchroo VK, Hawkins J, Ichimura T, Bonventre JV. KIM-1 mediates fatty acid uptake by renal tubular cells to promote progressive diabetic kidney disease. Cell Metab. (2021); 33(5):1042-1061.e7. doi: 10.1016/j.cmet.2021.04.004. Mozes MM, Böttinger EP, Jacot TA, Kopp JB. Renal expression of fibrotic matrix proteins and of transforming growth factor-beta (TGF-beta) isoforms in TGF-beta transgenic mice. J Am Soc Nephrol. (1999); 10(2):271-80. doi: 10.1681/ASN.V102271. Mulay SR, Kumar SV, Lech M, Desai J, Anders HJ. How Kidney Cell Death Induces Renal Necroinflammation. Semin Nephrol. (2016); 36(3):162-73. doi: 10.1016/j.semnephrol.2016.03.004. Muller PA, Vousden KH, Norman JC. p53 and its mutants in tumor cell migration and invasion. J Cell Biol. (2011) ; 192(2):209-18. doi: 10.1083/jcb.201009059. Muñoz-Sánchez J, Chánez-Cárdenas ME. The use of cobalt chloride as a chemical hypoxia model. J Appl Toxicol. (2019); 39(4):556-570. doi: 10.1002/jat.3749. Murakami K, Takemura T, Hino S, Yoshioka K. Urinary transforming growth factor-beta in patients with glomerular diseases. Pediatr Nephrol. (1997); 11(3):334-6. doi: 10.1007/s004670050289. Nechemia-Arbely Y, Barkan D, Pizov G, Shriki A, Rose-John S, Galun E, Axelrod JH. IL-6/IL-6R axis plays a critical role in acute kidney injury. J Am Soc Nephrol. (2008); 19(6):1106-15. doi: 10.1681/ASN.2007070744. Oida T, Weiner HL. Depletion of TGF-β from fetal bovine serum. J Immunol Methods. (2010); 362(1-2):195-8. doi: 10.1016/j.jim.2010.09.008. Oleinik NV, Krupenko SA. Ectopic expression of 10-formyltetrahydrofolate dehydrogenase in A549 cells induces G1 cell cycle arrest and apoptosis. Mol Cancer Res. (2003); 1(8):577-88. Ortega A. A new role for GABA: inhibition of tumor cell migration. Trends Pharmacol Sci. (2003); 24(4):151-4. doi: 10.1016/S0165-6147(03)00052-X. Park BS, Lee JO. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med. (2013); 45(12):e66. doi: 10.1038/emm.2013.97. Patel DM, Bose M, Cooper ME. Glucose and Blood Pressure-Dependent Pathways-The Progression of Diabetic Kidney Disease. Int J Mol Sci. (2020); 21(6):2218. doi: 10.3390/ijms21062218. Perales-Quintana MM, Saucedo AL, Lucio-Gutiérrez JR, Waksman N, Alarcon-Galvan G, Govea-Torres G, Sanchez-Martinez C, Pérez-Rodríguez E, Guzman-de la Garza FJ, Cordero-Pérez P. Metabolomic and biochemical characterization of a new model of the transition of acute kidney injury to chronic kidney disease induced by folic acid. PeerJ. (2019); 7:e7113. doi: 10.7717/peerj.7113. Pieroth R, Paver S, Day S, Lammersfeld C. Folate and Its Impact on Cancer Risk. Curr Nutr Rep. (2018); 7(3):70-84. doi: 10.1007/s13668-018-0237-y. Prodjosudjadi W, Gerritsma JS, van Es LA, Daha MR, Bruijn JA. Monocyte chemoattractant protein-1 in normal and diseased human kidneys: an immunohistochemical analysis. Clin Nephrol. (1995); 44(3):148-55. Puel A, Picard C, Lorrot M, Pons C, Chrabieh M, Lorenzo L, Mamani-Matsuda M, Jouanguy E, Gendrel D, Casanova JL. Recurrent staphylococcal cellulitis and subcutaneous abscesses in a child with autoantibodies against IL-6. J Immunol. (2008); 180(1):647-54. doi: 10.4049/jimmunol.180.1.647. Reidy K, Kang HM, Hostetter T, Susztak K. Molecular mechanisms of diabetic kidney disease. J Clin Invest. (2014); 124(6):2333-40. doi: 10.1172/JCI72271. Rodriguez FJ, Giannini C, Asmann YW, Sharma MK, Perry A, Tibbetts KM, Jenkins RB, Scheithauer BW, Anant S, Jenkins S, Eberhart CG, Sarkaria JN, Gutmann DH. Gene expression profiling of NF-1-associated and sporadic pilocytic astrocytoma identifies aldehyde dehydrogenase 1 family member L1 (ALDH1L1) as an underexpressed candidate biomarker in aggressive subtypes. J Neuropathol Exp Neurol. (2008); 67(12):1194-204. doi: 10.1097/NEN.0b013e31818fbe1e. Romagnani P, Remuzzi G, Glassock R, Levin A, Jager KJ, Tonelli M, Massy Z, Wanner C, Anders HJ. Chronic kidney disease. Nat Rev Dis Primers. (2017); 3:17088. doi: 10.1038/nrdp.2017.88. Rose-John S. The soluble interleukin-6 receptor and related proteins. Best Pract Res Clin Endocrinol Metab. (2015); 29(5):787-97. doi: 10.1016/j.beem.2015.07.001. Sakahira H, Enari M, Nagata S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature. (1998); 391(6662):96-9. doi: 10.1038/34214. Erratum in: Nature. 2015 Oct 29;526(7575):728. Sarasa SB, Mahendran R, Muthusamy G, Thankappan B, Selta DRF, Angayarkanni J. A Brief Review on the Non-protein Amino Acid, Gamma-amino Butyric Acid (GABA): Its Production and Role in Microbes. Curr Microbiol. (2020); 77(4):534-544. doi: 10.1007/s00284-019-01839-w. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. (2011); 1813(5):878-88. doi: 10.1016/j.bbamcr.2011.01.034. Schorah C. Dick Smithells, folic acid, and the prevention of neural tube defects. Birth Defects Res A Clin Mol Teratol. (2009); 85(4):254-9. doi: 10.1002/bdra.20544. Smithells RW, Sheppard S, Schorah CJ, Seller MJ, Nevin NC, Harris R, Read AP, Fielding DW. Apparent prevention of neural tube defects by periconceptional vitamin supplementation. Arch Dis Child. (1981); 56(12):911-8. doi: 10.1136/adc.56.12.911. Slee EA, Adrain C, Martin SJ. Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem. (2001); 276(10):7320-6. doi: 10.1074/jbc.M008363200. Sramek M, Neradil J, Veselska R. Much more than you expected: The non-DHFR-mediated effects of methotrexate. Biochim Biophys Acta Gen Subj. (2017); 1861(3):499-503. doi: 10.1016/j.bbagen.2016.12.014. Su H, Lei CT, Zhang C. Interleukin-6 Signaling Pathway and Its Role in Kidney Disease: An Update. Front Immunol. (2017); 8:405. doi: 10.3389/fimmu.2017.00405. Sugawara-Yokoo M, Suzuki T, Matsuzaki T, Naruse T, Takata K. Presence of fructose transporter GLUT5 in the S3 proximal tubules in the rat kidney. Kidney Int. (1999); 56(3):1022-8. doi: 10.1046/j.1523-1755.1999.00635.x. Susztak K, Raff AC, Schiffer M, Böttinger EP. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes. (2006); 55(1):225-33. Takano K, Yatabe MS, Abe A, Suzuki Y, Sanada H, Watanabe T, Kimura J, Yatabe J. Characteristic expressions of GABA receptors and GABA producing/transporting molecules in rat kidney. PLoS One. (2014); 9(9):e105835. doi: 10.1371/journal.pone.0105835. Taskinen MR, Packard CJ, Borén J. Dietary Fructose and the Metabolic Syndrome. Nutrients. (2019); 11(9):1987. doi: 10.3390/nu11091987. Teschner M, Kosch M, Schaefer RM. Folate metabolism in renal failure. Nephrol Dial Transplant. (2002); 17 Suppl 5:24-7. doi: 10.1093/ndt/17.suppl_5.24. Erratum in: Nephrol Dial Transplant. 2002 Oct;17(10):1862. Thiamin, R. (1998). Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington (DC): National Academies Press (US); (1998). Tang SC, Lai KN. The pathogenic role of the renal proximal tubular cell in diabetic nephropathy. Nephrol Dial Transplant. (2012); 27(8):3049-56. doi: 10.1093/ndt/gfs260. Vaidya VS, Niewczas MA, Ficociello LH, Johnson AC, Collings FB, Warram JH, Krolewski AS, Bonventre JV. Regression of microalbuminuria in type 1 diabetes is associated with lower levels of urinary tubular injury biomarkers, kidney injury molecule-1, and N-acetyl-β-D-glucosaminidase. Kidney Int. (2011); 79(4):464-70. doi: 10.1038/ki.2010.404. Vallon V. The proximal tubule in the pathophysiology of the diabetic kidney. Am J Physiol Regul Integr Comp Physiol. (2011); 300(5):R1009-22. doi: 10.1152/ajpregu.00809.2010. Verstrepen L, Bekaert T, Chau TL, Tavernier J, Chariot A, Beyaert R. TLR-4, IL-1R and TNF-R signaling to NF-kappaB: variations on a common theme. Cell Mol Life Sci. (2008); 65(19):2964-78. doi: 10.1007/s00018-008-8064-8. Verzola D, Bertolotto MB, Villaggio B, Ottonello L, Dallegri F, Frumento G, Berruti V, Gandolfo MT, Garibotto G, Deferran G. Taurine prevents apoptosis induced by high ambient glucose in human tubule renal cells. J Investig Med. (2002); 50(6):443-51. doi: 10.1136/jim-50-06-04. Viedt C, Dechend R, Fei J, Hänsch GM, Kreuzer J, Orth SR. MCP-1 induces inflammatory activation of human tubular epithelial cells: involvement of the transcription factors, nuclear factor-kappaB and activating protein-1. J Am Soc Nephrol. (2002); 13(6):1534-47. doi: 10.1097/01.asn.0000015609.31253.7f. Wang G, Dai J, Mao J, Zeng X, Yang X, Wang X. Folic acid reverses hyper-responsiveness of LPS-induced chemokine secretion from monocytes in patients with hyperhomocysteinemia. Atherosclerosis. (2005); 179(2):395-402. doi: 10.1016/j.atherosclerosis.2004.10.033. Wang JY, Yang JH, Xu J, Jia JY, Zhang XR, Yue XD, Chen LM, Shan CY, Zheng MY, Han F, Zhang Y, Yang XY, Chang BC. Renal tubular damage may contribute more to acute hyperglycemia induced kidney injury in non-diabetic conscious rats. J Diabetes Complications.(2015);29(5):621-8. doi: 10.1016/j.jdiacomp.2015.04.014. Wang MX, Zhao XJ, Chen TY, Liu YL, Jiao RQ, Zhang JH, Ma CH, Liu JH, Pan Y, Kong LD. Nuciferine Alleviates Renal Injury by Inhibiting Inflammatory Responses in Fructose-Fed Rats. J Agric Food Chem. (2016); 64(42):7899-7910. doi: 10.1021/acs.jafc.6b03031. Wong G, Hayen A, Chapman JR, Webster AC, Wang JJ, Mitchell P, Craig JC. Association of CKD and cancer risk in older people. J Am Soc Nephrol. (2009); 20(6):1341-50. doi: 10.1681/ASN.2008090998. Yakut M, Ustün Y, Kabaçam G, Soykan I. Serum vitamin B12 and folate status in patients with inflammatory bowel diseases. Eur J Intern Med. (2010); 21(4):320-3. doi: 10.1016/j.ejim.2010.05.007. Yamazaki T, Mimura I, Tanaka T, Nangaku M. Treatment of Diabetic Kidney Disease: Current and Future. Diabetes Metab J. (2021); 45(1):11-26. doi: 10.4093/dmj.2020.0217. Yan LJ. Folic acid-induced animal model of kidney disease. Animal Model Exp Med. (2021); 4(4):329-342. doi: 10.1002/ame2.12194. Zhang J, Jiang T, Liang X, Shu S, Xiang X, Zhang W, Guo T, Xie W, Deng W, Tang X. lncRNA MALAT1 mediated high glucose-induced HK-2 cell epithelial-to-mesenchymal transition and injury. J Physiol Biochem. (2019); 75(4):443-452. doi: 10.1007/s13105-019-00688-2. Zhang R, Ma J, Xia M, Zhu H, Ling W. Mild hyperhomocysteinemia induced by feeding rats diets rich in methionine or deficient in folate promotes early atherosclerotic inflammatory processes. J Nutr. (2004); 134(4):825-30. doi: 10.1093/jn/134.4.825. Zhang T, Li H, Shi J, Li S, Li M, Zhang L, Zheng L, Zheng D, Tang F, Zhang X, Zhang F, You X. p53 predominantly regulates IL-6 production and suppresses synovial inflammation in fibroblast-like synoviocytes and adjuvant-induced arthritis. Arthritis Res Ther. (2016); 18(1):271. doi: 10.1186/s13075-016-1161-4. Zhao R, Matherly LH, Goldman ID. Membrane transporters and folate homeostasis: intestinal absorption and transport into systemic compartments and tissues. Expert Rev Mol Med. (2009); 11:e4. doi: 10.1017/S1462399409000969. Zhou J, Zhang S, Sun X, Lou Y, Yu J. Hyperoside Protects HK-2 Cells Against High Glucose-Induced Apoptosis and Inflammation via the miR-499a-5p/NRIP1 Pathway. Pathol Oncol Res. (2021); 27:629829. doi: 10.3389/pore.2021.629829. Zhou L, Xu DY, Sha WG, Shen L, Lu GY, Yin X, Wang MJ. High glucose induces renal tubular epithelial injury via Sirt1/NF-kappaB/microR-29/Keap1 signal pathway. J Transl Med. (2015); 13:352. doi: 10.1186/s12967-015-0710-y. Zhu Y, Cui H, Xia Y, Gan H. RIPK3-Mediated Necroptosis and Apoptosis Contributes to Renal Tubular Cell Progressive Loss and Chronic Kidney Disease Progression in Rats. PLoS One. (2016); 11(6):e0156729. doi: 10.1371/journal.pone.0156729. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84961 | - |
| dc.description.abstract | 糖尿病腎病變是糖尿病的嚴重併發症,也是導致末期腎臟病最主要原因。現 代化飲食易引起肥胖及葉酸營養不足,近年研究觀察到葉酸不足會增加慢性腎臟 病的風險,因此,葉酸與腎臟疾病的關係值得探討。已知高葡萄糖與果糖皆會誘 導腎細胞發炎與纖維化,進而導致腎損傷,而本研究室先前也觀察到葉酸缺乏會 加劇高豬油高果糖飲食小鼠的腎炎與纖維化,但高糖與葉酸對於腎細胞的影響尚 不清楚,故本研究欲使用近端腎小管上皮細胞株 HK-2 細胞,探討葉酸營養狀況 與高糖對腎細胞分泌促發炎和纖維化因子的影響。將 HK-2 細胞培養於不同濃度 葡萄糖或果糖,結果發現葡萄糖或果糖會增加 HK-2 細胞分泌 IL-6、MCP-1 與 TGF-β1。低濃度 LPS 與葡萄糖共同刺激增加 MCP-1,而高濃度 LPS 與葡萄糖或 果糖共同刺激則增加 IL-6 與 TGF-β1。瘦體素與葡萄糖共同刺激 HK-2 細胞增加 IL-6、MCP-1 與 TGF-β1,瘦體素與果糖共同刺激則增加 IL-6。以葡萄糖或果糖刺 激 HK-2 細胞皆導致 p53 基因表現量顯著增加,表示葡萄糖或果糖會增加細胞凋亡 基因表現。此外,以不同葉酸濃度 (f0、f1 與 f5) 培養 HK-2 細胞,發現 f0 顯著降 低 IL-6,但增加 MCP-1 與 TGF-β1。不同葉酸與高糖培養下,f0 降低葡萄糖刺激 的 IL-6,但增加 MCP-1 與 TGF-β1,而 f5 則降低葡萄糖或果糖刺激所分泌的 MCP- 1。最後,不同葉酸濃度培養下,f0 顯著增加 kim-1、 p53 與 caspase-3 基因表現。 總結,葡萄糖與果糖加劇 LPS 或瘦體素刺激下腎細胞分泌促發炎與纖維化因子, 也會增加細胞凋亡基因表現。葉酸缺乏加劇腎細胞在高葡萄糖與果糖下 MCP-1 與 TGF-β1 的分泌,補充葉酸則降低 MCP-1 的分泌。缺葉酸也顯著增加腎損傷與細 胞凋亡相關基因,顯示葉酸缺乏可能為促進腎臟疾病的危險因子。 | zh_TW |
| dc.description.abstract | Diabetic kidney disease is the major cause of end-stage kidney disease. Modern diets are closely associated with the development of obesity and folate deficiency. Previous studies have shown that low folate levels showed a significant association with the higher risk of chronic kidney disease. However, whether folate deficiency and high sugar could result in renal inflammation and fibrosis is still unclear. The aim of this study was to investigate the effects of folate and sugar on the proinflammatory and fibrotic factors by using renal tube cell line (HK-2). HK-2 cells were cultured in different concentrations of glucose or fructose. The results demonstrated that glucose or fructose had a concentration- dependent effect on the secretion of IL-6, MCP-1 and TGF-β1. Co-stimulation of low concentrations of LPS with glucose increased MCP-1, while co-stimulation of high concentrations of LPS with glucose or fructose increased IL-6 and TGF-β1.Further, co- stimulation of leptin and glucose increased IL-6, MCP-1 and TGF-β1 in HK-2 cells, and co-stimulation of leptin and fructose increased IL-6. Stimulation of HK-2 cells with glucose or fructose resulted in a significant increase in p53 gene expression. In addition, HK-2 cells were cultured with different folate medium (f0, f1, and f5). f0 was found to significantly reduce IL-6, but increase MCP-1 and TGF-β1. Under different folate status and high sugar cultures, f0 decreased glucose-stimulated IL-6, but increased MCP-1 and TGF-β1, while f5 decreased glucose- or fructose-stimulated MCP-1 secretion. Finally, f0 significantly increased the expression of kim-1, p53 and caspase-3 genes. In conclusion, high sugar increased proinflammatory and fibrotic cytokines from HK-2 cells stimulated by LPS or leptin. Folate deficiency aggravates the secretion of MCP-1 and TGF-β1 from HK-2 cells under high sugar status, while supplementation of folate reduces MCP-1. Folate deficiency also increases genes related to renal injury and apoptosis, and thus, inadequate folate status might be one of the risk factors for kidney disease. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:35:05Z (GMT). No. of bitstreams: 1 U0001-1708202215074100.pdf: 4171598 bytes, checksum: 9e8b12b84245e0c472dc3687e09fc8c2 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 謝誌 ii 摘要 iii Abstract iv 目錄 v 圖目錄 viii 表目錄 ix 縮寫對照表 x 第一章 文獻回顧 1 第一節 葉酸 1 一、葉酸簡介 1 二、葉酸的生理功能 2 三、葉酸與疾病 3 四、葉酸與發炎反應 4 第二節 腎臟 5 一、腎臟構造與功能 5 二、腎臟疾病 7 三、腎臟疾病與發炎反應 9 四、腎臟疾病相關細胞激素 9 1. IL-6 10 2. MCP-1 11 3. TGF-β 11 五、腎臟疾病與葉酸 12 第三節 亮細胞腎癌 13 第四節 糖尿病腎病變 14 一、簡介 14 二、糖尿病腎病變與高葡萄糖 14 三、糖尿病腎病變與高果糖 15 四、糖尿病腎病變與KIM-1 16 五、糖尿病腎病變與細胞凋亡 16 第五節 HK-2細胞株 17 第二章 探討葡萄糖或果糖對腎細胞的影響 19 第一節 研究動機與目的 19 第二節 實驗設計、分組與材料與方法 20 一、實驗設計與分組 20 二、材料與方法 20 (一) HK-2細胞培養 20 (二) 細胞存活率測定 (MTT) 21 (三) HK-2細胞的IL-6、MCP-1與TGF-β1分泌量測定 23 (四) glucose或fructose對HK-2細胞的kim-1、 p53與caspase-3基因表現量 26 (五) 即時聚合酶連鎖反應 (Real-time PCR) 28 (六) 統計方法 29 第三節 結果 30 一、不同濃度葡萄糖或果糖對HK-2細胞存活率與細胞激素分泌的影響 30 (一)葡萄糖或果糖對HK-2細胞存活率的影響 30 (二)不同葡萄糖濃度對HK-2細胞株分泌細胞激素的影響 31 (三)不同果糖濃度對HK-2細胞株分泌細胞激素的影響 32 二、葡萄糖或果糖與LPS共處理對HK-2細胞株分泌細胞激素的影響 34 (一)低濃度葡萄糖或果糖與10-100 ng/mL LPS 34 (二)LPS濃度為500 ng/mL 35 (三)LPS濃度為1 μg/mL 36 三、葡萄糖或果糖與瘦素共處理對HK-2細胞株分泌細胞激素的影響 37 四、葡萄糖或果糖對HK-2細胞的基因表現量影響 38 第三章 探討高糖環境下葉酸營養狀況對腎細胞的影響 39 第一節 研究動機與目的 39 第二節 實驗設計、分組與材料與方法 40 一、實驗設計與分組 40 二、材料與方法 40 (一) HK-2細胞培養於缺葉酸或補充葉酸培養液 40 (二) 細胞內葉酸含量測定 41 (三) HK-2細胞的IL-6、MCP-1與TGF-β1分泌量測定 42 (四) 葉酸與高糖對HK-2細胞的kim-1、 p53與caspase-3基因表現量 43 (五) 統計方法 44 第三節 結果 45 一、HK-2細胞內葉酸含量 45 二、葉酸營養對HK-2細胞分泌細胞激素的影響 46 三、葉酸營養對高糖培養下HK-2細胞分泌細胞激素的影響 47 四、葉酸對高糖下LPS刺激HK-2細胞分泌細胞激素的影響 49 五、葉酸與葡萄糖或果糖對HK-2細胞的基因表現量影響 51 第四章GABA對腎細胞癌化的調控機制探討 52 第一節 研究動機與目的 52 第二節 實驗設計、分組與材料與方法 53 一、實驗設計與分組 53 二、材料與方法 53 (一) HK-2細胞培養 53 (二)MES-13細胞培養 53 (三) VHL siRNA轉染 54 (四) siRNA對HK-2細胞的VHL基因表現量 55 (五) 西方墨點法 (western blot) 55 (六) 氯化鈷誘導缺氧實驗 58 (七) 統計方法 59 第三節 結果 60 一、以VHL siRNA轉染HK-2細胞抑制VHL基因表現量 60 二、以VHL siRNA轉染HK-2細胞抑制VHL增加HIF-1α蛋白質表現量 61 三、以氯化鈷誘導缺氧HK-2細胞探討GABA的影響 62 四、以VHL siRNA轉染MES-13細胞抑制VHL基因表現量 63 五、以VHL siRNA轉染MES-13細胞抑制VHL增加HIF-1α蛋白質表現量 64 第五章 討論與結論 65 第一節 討論 65 一、VHL siRNA對不同細胞株的基因抑制效果 65 二、添加葡萄糖或果糖對HK-2細胞分泌細胞激素時程的影響 66 三、HK-2細胞數曲線 66 四、高糖對HK-2細胞的滲透壓 67 五、比較葡萄糖與果糖對HK-2細胞的影響 67 六、葉酸對HK-2細胞分泌IL-6的影響 68 第二節 結論 70 附錄圖 71 參考文獻 72 | |
| dc.language.iso | zh-TW | |
| dc.subject | 葉酸 | zh_TW |
| dc.subject | 糖尿病腎病變 | zh_TW |
| dc.subject | 高葡萄糖 | zh_TW |
| dc.subject | 高果糖 | zh_TW |
| dc.subject | 促發炎 | zh_TW |
| dc.subject | 纖維化 | zh_TW |
| dc.subject | fibrosis | en |
| dc.subject | folate | en |
| dc.subject | diabetic kidney disease | en |
| dc.subject | high glucose | en |
| dc.subject | high fructose | en |
| dc.subject | pro-inflammatory | en |
| dc.title | 以HK-2腎小管細胞株探討葉酸與高葡萄糖或果糖對腎的影響 | zh_TW |
| dc.title | Effects of folate and high glucose or fructose on kidney using HK-2 renal tubular cell culture | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江孟燦(Meng-Tsan Chiang),許瑞芬(Rwei-Fen Syu),謝佳倩(Chia-Chien Hsieh),洪永瀚(Yong-Han Hong) | |
| dc.subject.keyword | 葉酸,糖尿病腎病變,高葡萄糖,高果糖,促發炎,纖維化, | zh_TW |
| dc.subject.keyword | folate,diabetic kidney disease,high glucose,high fructose,pro-inflammatory,fibrosis, | en |
| dc.relation.page | 86 | |
| dc.identifier.doi | 10.6342/NTU202202509 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-23 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科技學系 | zh_TW |
| dc.date.embargo-lift | 2022-08-26 | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202215074100.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
