Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84960
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor章浩宏(Hao-Hueng Chang)
dc.contributor.authorNi Linen
dc.contributor.author林霓zh_TW
dc.date.accessioned2023-03-19T22:35:02Z-
dc.date.copyright2022-10-05
dc.date.issued2022
dc.date.submitted2022-08-23
dc.identifier.citation1. Renton, T. and Z. Yilmaz, Managing iatrogenic trigeminal nerve injury: a case series and review of the literature. International journal of oral and maxillofacial surgery, 2012. 41(5): p. 629-637. 2. Leung, Y.Y., Management and prevention of third molar surgery-related trigeminal nerve injury: time for a rethink. Journal of the Korean Association of Oral and Maxillofacial Surgeons, 2019. 45(5): p. 233-240. 3. Ziccardi, V.B. and J.R. Zuniga, Nerve injuries after third molar removal. Oral and Maxillofacial Surgery Clinics, 2007. 19(1): p. 105-115. 4. Lam, N.P., et al., Patient satisfaction after trigeminal nerve repair. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2003. 95(5): p. 538-543. 5. Kiyak, H.A., et al., The Psychological Impact of Osseointegrated Dental Implants. International Journal of Oral & Maxillofacial Implants, 1990. 5(1). 6. MacDermid, J.C., Measurement of health outcomes following tendon and nerve repair. Journal of Hand Therapy, 2005. 18(2): p. 297-312. 7. Treede, R.-D., et al., Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology, 2008. 70(18): p. 1630-1635. 8. Cruccu, G., et al., EFNS guidelines on neuropathic pain assessment: revised 2009. European journal of neurology, 2010. 17(8): p. 1010-1018. 9. Han, J., et al., Stem cells, tissue engineering and periodontal regeneration. Australian dental journal, 2014. 59: p. 117-130. 10. Zhai, Q., et al., Dental stem cell and dental tissue regeneration. Frontiers of medicine, 2019. 13(2): p. 152-159. 11. Kushnerev, E. and J. Yates, Evidence‐based outcomes following inferior alveolar and lingual nerve injury and repair: a systematic review. Journal of oral rehabilitation, 2015. 42(10): p. 786-802. 12. Tay, A.B.G., C.Y. Poon, and L.Y. Teh, Immediate repair of transected inferior alveolar nerves in sagittal split osteotomies. Journal of oral and maxillofacial surgery, 2008. 66(12): p. 2476-2481. 13. Robinson, P., A. Loescher, and K. Smith, A prospective, quantitative study on the clinical outcome of lingual nerve repair. British Journal of Oral and Maxillofacial Surgery, 2000. 38(4): p. 255-263. 14. Cornelius, C., M. Roser, and M. Ehrenfeld, Microneural reconstruction after iatrogenic lesions of the lingual nerve and the inferior alveolar nerve. Critical evaluation. Mund-, Kiefer-und Gesichtschirurgie: MKG, 1997. 1(4): p. 213-223. 15. Mozsary, P.G. and C.S. Syers, Microsurgical correction of the injured inferior alveolar nerve. Journal of oral and maxillofacial surgery, 1985. 43(5): p. 353-358. 16. Yamauchi, T., et al., Experiences in lingual nerve repair surgery. Asian Journal of Oral and Maxillofacial Surgery, 2006. 18(4): p. 280-285. 17. Bagheri, S.C., et al., Microsurgical repair of the peripheral trigeminal nerve after mandibular sagittal split ramus osteotomy. Journal of oral and maxillofacial surgery, 2010. 68(11): p. 2770-2782. 18. Jones, R., The use of vein grafts in the repair of the inferior alveolar nerve following surgery. Australian dental journal, 2010. 55(2): p. 207-213. 19. Pogrel, M.A. and A. Maghen, The use of autogenous vein grafts for inferior alveolar and lingual nerve reconstruction. Journal of oral and maxillofacial surgery, 2001. 59(9): p. 985-988. 20. Pogrel, M.A., A.R. McDonald, and L.B. Kaban, Gore-Tex tubing as a conduit for repair of lingual and inferior alveolar nerve continuity defects: a preliminary report. Journal of oral and maxillofacial surgery, 1998. 56(3): p. 319-321. 21. Pitta, M.C., et al., Use of Gore-Tex tubing as a conduit for inferior alveolar and lingual nerve repair: experience with 6 cases. Journal of oral and maxillofacial surgery, 2001. 59(5): p. 493-496. 22. Farole, A. and B.T. Jamal, A bioabsorbable collagen nerve cuff (NeuraGen) for repair of lingual and inferior alveolar nerve injuries: a case series. Journal of oral and maxillofacial surgery, 2008. 66(10): p. 2058-2062. 23. Kim, J.-H., et al., Effective end-to-end repair of inferior alveolar nerve defect by using nerve sliding technique. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2011. 112(3): p. e28-e30. 24. Bagheri, S.C., et al., Microsurgical repair of the inferior alveolar nerve: success rate and factors that adversely affect outcome. Journal of oral and maxillofacial surgery, 2012. 70(8): p. 1978-1990. 25. Nakashima, M. and A. Akamine, The application of tissue engineering to regeneration of pulp and dentin in endodontics. Journal of endodontics, 2005. 31(10): p. 711-718. 26. Bartold, P.M., et al., Tissue engineering: a new paradigm for periodontal regeneration based on molecular and cell biology. Periodontology 2000, 2000. 24(1): p. 253-269. 27. Kaigler, D. and D. Mooney, Tissue engineering's impact on dentistry. Journal of dental education, 2001. 65(5): p. 456-462. 28. Smith, A., A glossary for stem-cell biology. Nature, 2006. 441(7097): p. 1060-1060. 29. Morrison, S.J., N.M. Shah, and D.J. Anderson, Regulatory mechanisms in stem cell biology. Cell, 1997. 88(3): p. 287-298. 30. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. cell, 2007. 131(5): p. 861-872. 31. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. science, 2007. 318(5858): p. 1917-1920. 32. Bongso, A., C.Y. Fong, and K. Gauthaman, Taking stem cells to the clinic: major challenges. Journal of cellular biochemistry, 2008. 105(6): p. 1352-1360. 33. Lee, H., et al., Induced pluripotent stem cells in regenerative medicine: an argument for continued research on human embryonic stem cells. Regenerative Medicine, 2009. 4(5): p. 759-769. 34. Gronthos, S., et al., Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences, 2000. 97(25): p. 13625-13630. 35. Miura, M., et al., SHED: stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences, 2003. 100(10): p. 5807-5812. 36. Yasui, T., et al., Purified human dental pulp stem cells promote osteogenic regeneration. Journal of dental research, 2016. 95(2): p. 206-214. 37. Chang, C.-C., et al., Neurogenic differentiation of dental pulp stem cells to neuron-like cells in dopaminergic and motor neuronal inductive media. Journal of the Formosan Medical Association, 2014. 113(12): p. 956-965. 38. d’Aquino, R., et al., Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater, 2009. 18(7): p. 75-83. 39. Peterson, L.J., et al., Contemporary oral and maxillofacial surgery. 1998: Mosby St. Louis. 40. Kipp, D.P., B.H. Goldstein, and W.W. Weiss, Dysesthesia after mandibular third molar surgery: a retrospective study and analysis of 1,377 surgical procedures. The Journal of the American Dental Association, 1980. 100(2): p. 185-192. 41. Sarikov, R. and G. Juodzbalys, Inferior alveolar nerve injury after mandibular third molar extraction: a literature review. Journal of oral & maxillofacial research, 2014. 5(4). 42. Su, N., et al., Predictive value of panoramic radiography for injury of inferior alveolar nerve after mandibular third molar surgery. Journal of Oral and Maxillofacial Surgery, 2017. 75(4): p. 663-679. 43. Rood, J. and B.N. Shehab, The radiological prediction of inferior alveolar nerve injury during third molar surgery. British Journal of Oral and Maxillofacial Surgery, 1990. 28(1): p. 20-25. 44. Atieh, M.A., Diagnostic accuracy of panoramic radiography in determining relationship between inferior alveolar nerve and mandibular third molar. Journal of oral and maxillofacial surgery, 2010. 68(1): p. 74-82. 45. Elkhateeb, S.M. and S.S. Awad, Accuracy of panoramic radiographic predictor signs in the assessment of proximity of impacted third molars with the mandibular canal. Journal of Taibah University Medical Sciences, 2018. 13(3): p. 254-261. 46. Werth, K. and L. Ledbetter, Artificial intelligence in head and neck imaging: a glimpse into the future. Neuroimaging Clinics, 2020. 30(3): p. 359-368. 47. Dratsch, T., et al., Practical applications of deep learning: classifying the most common categories of plain radiographs in a PACS using a neural network. European Radiology, 2021. 31(4): p. 1812-1818. 48. Leite, A.F., et al., Artificial intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs. Clinical oral investigations, 2021. 25(4): p. 2257-2267. 49. Kim, B.S., et al., Deep Learning-Based Prediction of Paresthesia after Third Molar Extraction: A Preliminary Study. Diagnostics, 2021. 11(9): p. 1572. 50. Romsa, B. and S.L. Ruggiero, Diagnosis and Management of Lingual Nerve Injuries. Oral Maxillofac Surg Clin North Am, 2021. 33(2): p. 239-248. 51. Coulthard, P., et al., Interventions for iatrogenic inferior alveolar and lingual nerve injury. Cochrane Database Syst Rev, 2014(4): p. Cd005293. 52. Devine, M., et al., Identifying criteria for diagnosis of post-traumatic pain and altered sensation of the maxillary and mandibular branches of the trigeminal nerve: a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol, 2018. 125(6): p. 526-540. 53. Smith, J.G., et al., The psychosocial and affective burden of posttraumatic neuropathy following injuries to the trigeminal nerve. J Orofac Pain, 2013. 27(4): p. 293-303. 54. Susarla, S.M., et al., A comparison of patient satisfaction and objective assessment of neurosensory function after trigeminal nerve repair. J Oral Maxillofac Surg, 2005. 63(8): p. 1138-44. 55. Smith, M.H. and K.E. Lung, Nerve injuries after dental injection: a review of the literature. J Can Dent Assoc, 2006. 72(6): p. 559-64. 56. Renton, T., Update on coronectomy. A safer way to remove high risk mandibular third molars. Dent Update, 2013. 40(5): p. 362-4, 366-8. 57. Vazquez-Delgado, E., et al., Sleep quality and psychosocial characteristics of patients with painful post-traumatic trigeminal neuropathies. Oral Surg Oral Med Oral Pathol Oral Radiol, 2018. 126(4): p. 342-348. 58. Feinmann, C. and T. Newton-John, Psychiatric and psychological management considerations associated with nerve damage and neuropathic trigeminal pain. J Orofac Pain, 2004. 18(4): p. 360-5. 59. Pogrel, M.A., et al., Long-term outcome of trigeminal nerve injuries related to dental treatment. J Oral Maxillofac Surg, 2011. 69(9): p. 2284-8. 60. Veitz-Keenan, A. and J.R. Keenan, Trials needed to identify best management of iatrogenic inferior alveolar and lingual nerve injuries. Evid Based Dent, 2015. 16(1): p. 29. 61. Sandstedt, P. and S. Sörensen, Neurosensory disturbances of the trigeminal nerve: a long-term follow-up of traumatic injuries. J Oral Maxillofac Surg, 1995. 53(5): p. 498-505. 62. Van Boven, R.W. and K.O. Johnson, A psychophysical study of the mechanisms of sensory recovery following nerve injury in humans. Brain, 1994. 117 ( Pt 1): p. 149-67. 63. Essick, G.K., et al., Sensory retraining following orthognathic surgery: effect on threshold measures of sensory function. J Oral Rehabil, 2009. 36(6): p. 415-26. 64. Chow, H.T. and L.Y. Teh, Sensory impairment after resection of the mandible: a case report of 10 cases. J Oral Maxillofac Surg, 2000. 58(6): p. 629-35. 65. Lee, E.G., et al., The impact of altered sensation affecting the lower lip after orthognathic treatment. J Oral Maxillofac Surg, 2011. 69(11): p. e431-45. 66. Robinson, P.P. and K.G. Smith, A study on the efficacy of late lingual nerve repair. Br J Oral Maxillofac Surg, 1996. 34(1): p. 96-103. 67. Walter, J.M., Jr. and J.M. Gregg, Analysis of postsurgical neurologic alteration in the trigeminal nerve. J Oral Surg, 1979. 37(6): p. 410-4. 68. Dominici, M., et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006. 8(4): p. 315-317. 69. Pierdomenico, L., et al., Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation, 2005. 80(6): p. 836-842. 70. Cheng, P.-H., et al., Postnatal stem/progenitor cells derived from the dental pulp of adult chimpanzee. BMC cell biology, 2008. 9(1): p. 1-11. 71. Perry, B.C., et al., Collection, cryopreservation, and characterization of human dental pulp–derived mesenchymal stem cells for banking and clinical use. Tissue Engineering Part C: Methods, 2008. 14(2): p. 149-156. 72. Oda, E., et al., Immunohistochemical distribution of tubulin beta II in human normal and neoplastic tissues. The Kurume Medical Journal, 2005. 52(4): p. 117-125. 73. 章嘉潔, 幹細胞與生物材料於牙齒組織工程及再生. 2014. 74. D’Andrea, M., R. Howanski, and C. Saller, MAP2 IHC detection: a marker of antigenicity in CNS tissues. Biotechnic & Histochemistry, 2017. 92(5): p. 363-373. 75. Kobelt, L.J., et al., Short duration electrical stimulation to enhance neurite outgrowth and maturation of adult neural stem progenitor cells. Annals of biomedical engineering, 2014. 42(10): p. 2164-2176. 76. Chai, Y., et al., Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development, 2000. 127(8): p. 1671-1679. 77. Gronthos, S., et al., Stem cell properties of human dental pulp stem cells. Journal of dental research, 2002. 81(8): p. 531-535. 78. Nosrat, I.V., et al., Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system. European Journal of Neuroscience, 2004. 19(9): p. 2388-2398.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84960-
dc.description.abstract研究背景 智齒手術為常見的牙科手術,手術併發症中的下顎齒槽神經損傷,其伴隨的症狀常對患者之後的生活品質造成影響。對於神經損傷,傳統治療包含藥物治療、轉介之復健和心理治療等。然而,藥物使用雖有一定的幫助,尚仍缺乏長期或可預期性的結果。近年來,組織工程於醫學領域的應用,對於周邊神經損傷之患者,組織工程輔助療法似乎成為一道曙光。其中,幹細胞療法及生物支架已證實對於脊髓神經損傷的患者有正向的療效。本研究之主要目標係以細胞實驗模式針對牙髓幹細胞輔以不同電壓之電刺激,評估其誘導分化成神經細胞的能力。進一步輔以文獻回顧及臨床資料庫之建立,期能初步建立提供未來影響醫源性三叉神經損傷於臨床治療之處置流程之基礎研究。 實驗方法 針對細胞研究,係收集人類牙髓幹細胞,進行分離、純化及驗證牙髓幹細胞以完成細胞之製備,其後進行兩次的誘導分化,於第二次誘導分化時分組以不同電壓(0.5V、1.0V、1.5V)進行短期電刺激,再以細胞型態、免疫螢光染色及流式細胞儀確認細胞分化及生長結果。 實驗結果 本研究已由文獻回顧確認下顎智齒手術術後之神經損傷之臨床重要性,並以細胞實驗證實牙髓幹細胞於適當的神經分化液驅導之下,有分化為神經細胞的潛能;同時設計出一電刺激裝置,確認若在細胞分化成熟過程中,輔以1.0V的電刺激,可達成最多的神經細胞生長及分化。並經由細胞型態、免疫螢光染色及流式細胞儀確認。 結論 本實驗已順利開發出電刺激裝置,用於評估齒源性幹細胞誘導分化成神經細胞的研究模式。經由此一模式,也證實適當的電刺激有驅導牙髓幹細胞分化之潛能,並可得出一較佳電壓強度。雖針對神經損傷之臨床處置,目前仍有極大發展空間,本研究已初步建立神經損傷於臨床治療之處置流程之基礎研究。zh_TW
dc.description.abstractBackground Mandibular third molar surgery was one of the most common dentoalveolar surgery. However, the potential complication of inferior alveolar nerve injury after the surgery played a profound role in the patients’ quality of life. The conventional management of nerve injury included medication, physical therapy, psychological consultation, and also surgical repair, but there was still lack of predictable long-term outcome and required further investigation. Recently, tissue engineering was a thriving topic in the field of medical care. The optimistic outcome of application of stem cell therapy and biomechanical scaffold in treatment of patients with spinal cord injury became a shining light of hope for many other patients suffered from nerve injury. Therefore, our specific aim was to investigate the effect of electric stimuli on odontogenic stem cells on nerve differentiation in vitro. Accompanied with literature review and establishing a clinical dataset, a proper clinical management protocol of iatrogenic trigeminal nerve injury may be developed. Material and method In the in vitro study, we collected extracted human teeth, and performed isolation, purification, culture and identification of human dental pulp stem cells. After neural differentiation on dopaminergic neural induction medium, short term electric stimuli were indicated on the stem cells. Last but not least, cell morphology, immunocytochemistry and flow cytometry were done to confirm the result of neural differentiation. Results Iatrogenic trigeminal nerve injury significantly affected the quality of life of patients. In in vitro study, we confirmed that dental pulp stem cells(DPSCs) owned the potential of neural differentiation after proper induction. Meanwhile, we designed an appliance to perform electric stimuli on DPSCs. The result showed better neural differentiation after short term electric stimuli with 1.0 voltage, and was verified by cell morphology, immunocytochemistry and flow cytometry. Conclusion Our result supported that electric stimuli with specific voltage had the potential of positive effect on neural differentiation of DPSCs. An appliance was also designed and manufactured to provide electric stimuli. However, lack of solid evidence was still a major challenge to the clinical protocol of nerve repair. We have initially established a clinical treatment scheme for iatrogenic trigeminal nerve injury based on the in vitro study.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:35:02Z (GMT). No. of bitstreams: 1
U0001-1608202211154600.pdf: 17486690 bytes, checksum: 382da5f0e34078300f0bbcbc6f513c38 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents謝誌 3 摘要 4 ABSTRACT 6 目錄 8 圖目錄 11 表目錄 12 第一章 引言與文獻回顧 13 一、 本章摘要 13 二、 智齒手術與三叉神經損傷 13 三、 神經損傷的評估 14 四、 神經損傷之傳統處置 15 五、 組織工程於牙科之應用 16 六、 幹細胞療法 17 七、 預防神經損傷 18 八、 人工智慧於醫學影像的應用 19 第二章 實驗動機與目的 21 第三章 實驗方法 22 一、 文獻回顧 22 二、 細胞研究 22 (一) 本實驗摘要 22 (二) 初代牙髓幹細胞(dental pulp stem cells;DPSCs)之分離純化 22 (三) 誘導神經細胞分化:誘導牙髓幹細胞(DPSCs)分化生成神經細胞 23 (四) 電刺激 24 (五) 免疫螢光染色 24 (六) 流氏細胞儀(flow cytometry):偵測細胞表面標記 25 第四章 研究結果 28 一、 術後神經損傷之臨床重要性 28 二、 齒源性幹細胞之製備 28 (一) 幹細胞之分離 29 (二) 幹細胞之純化 29 (三) 幹細胞之培養:成纖維細胞集落形成單位評估 (Colony-Forming Unit, CFU assay) 30 (四) 幹細胞之鑑定 30 三、 神經分化液:SHH的濃度 31 四、 特定電壓的電刺激可促進神經細胞型態之改變 32 五、 免疫螢光染色 32 六、 流式細胞儀 33 第五章 討論 34 一、 細胞型態變化 34 二、 免疫螢光染色結果 34 三、 電刺激實驗結果 35 四、 流式細胞儀結果 35 五、 預想之電刺激合併組織工程臨床治療流程 36 六、 臨床實驗設計 36 第六章 結論及未來展望 38 參考文獻 39 附圖 46 附表 63
dc.language.isozh-TW
dc.title下顎智齒拔除術後神經損傷修復之研究:電刺激促進齒源性幹細胞神經分化zh_TW
dc.titleInvestigation of Nerve Repair after Mandibular Third Molar Surgery:Effect of Electric Stimuli and Odontogenic Stem Cell on Nerve Differentiationen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林俊彬(Chun-Pin Lin),郭英雄(Ying-shiung Kuo)
dc.subject.keyword智齒手術,三叉神經損傷,牙髓幹細胞,電刺激,zh_TW
dc.subject.keywordMandibular third molar surgery,trigeminal nerve injury,dental pulp stem cell,electric stimuli,en
dc.relation.page70
dc.identifier.doi10.6342/NTU202202435
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-23
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
dc.date.embargo-lift2022-10-05-
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-1608202211154600.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
17.08 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved