請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84957
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李建模(Chien-Mo Li) | |
dc.contributor.author | Yu-Min Li | en |
dc.contributor.author | 李育旻 | zh_TW |
dc.date.accessioned | 2023-03-19T22:34:51Z | - |
dc.date.copyright | 2022-08-31 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-23 | |
dc.identifier.citation | [1] A. Paler, I. Polian, and J. P. Hayes, “Detection and diagnosis of faulty quantum circuits,” in 17th Asia and South Pacific Design Automation Conference, pp. 181–186, IEEE, 2012. [2] D. Bera, “Detection and diagnosis of single faults in quantum circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 3, pp. 587–600, 2017. [3] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, pp. 195–202, 2017. [4] H.-Y. Huang, M. Broughton, M. Mohseni, R. Babbush, S. Boixo, H. Neven, and J. R. McClean, “Power of data in quantum machine learning,” Nature communications, vol. 12, no. 1, pp. 1–9, 2021. [5] T. Kadowaki and H. Nishimori, “Quantum annealing in the transverse ising model,” Physical Review E, vol. 58, no. 5, p. 5355, 1998. [6] R. D. Somma, S. Boixo, H. Barnum, and E. Knill, “Quantum simulations of classical annealing processes,” Physical review letters, vol. 101, no. 13, p. 130504, 2008. [7] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. AspuruGuzik, and J. L. O'brien, “A variational eigenvalue solver on a photonic quantum processor,” Nature communications, vol. 5, no. 1, pp. 1–7, 2014. [8] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, “The theory of variational hybrid quantum-classical algorithms,” New Journal of Physics, vol. 18, no. 2, p. 023023, 2016. [9] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings 35th annual symposium on foundations of computer science, pp. 124–134, Ieee, 1994. [10] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pp. 212–219, 1996. [11] A. A. Houck, H. E. Türeci, and J. Koch, “On-chip quantum simulation with superconducting circuits,” Nature Physics, vol. 8, no. 4, pp. 292–299, 2012. [12] T. Hensgens, T. Fujita, L. Janssen, X. Li, C. Van Diepen, C. Reichl, W. Wegscheider, S. Das Sarma, and L. M. Vandersypen, “Quantum simulation of a fermi–hubbard model using a semiconductor quantum dot array,” Nature, vol. 548, no. 7665, pp. 70–73, 2017. [13] M. Veldhorst, H. Eenink, C.-H. Yang, and A. S. Dzurak, “Silicon cmos architecture for a spin-based quantum computer,” Nature communications, vol. 8, no. 1, pp. 1–8, 2017. [14] R. Blatt and C. F. Roos, “Quantum simulations with trapped ions,” Nature Physics, vol. 8, no. 4, pp. 277–284, 2012. [15] Y. Nam, J.-S. Chen, N. C. Pisenti, K. Wright, C. Delaney, D. Maslov, K. R. Brown, S. Allen, J. M. Amini, J. Apisdorf, et al., “Ground-state energy estimation of the water molecule on a trapped-ion quantum computer,” npj Quantum Information, vol. 6, no. 1, pp. 1–6, 2020. [16] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, et al., “Quantum computational advantage using photons,”Science, vol. 370, no. 6523, pp. 1460–1463, 2020. [17] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell, et al., “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, 2019. [18] J. Hsu, “Ces 2018: Intel's 49-qubit chip shoots for quantum supremacy,” IEEE Spectrum Tech Talk, pp. 1–6, 2018. [19] J. Chow, O. Dial, and J. Gambetta, “Ibm quantum breaks the 100-qubit processor barrier,” IBM Research Blog, 2021. [20] J. Gambetta, “Ibm's roadmap for scaling quantum technology,” IBM Research Blog [Internet], 2020. [21] IBM Quantum. https://quantum-computing.ibm.com/, 2021. [22] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum, vol. 2, p. 79, 2018. [23] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke, et al., “Noisy intermediatescale quantum algorithms,” Reviews of Modern Physics, vol. 94, no. 1, p. 015004, 2022. [24] Y. Ding and F. T. Chong, “Quantum computer systems: Research for noisy intermediate-scale quantum computers,” Synthesis Lectures on Computer Architecture, vol. 15, no. 2, pp. 1–227, 2020. [25] A. Paler, A. Alaghi, I. Polian, and J. P. Hayes, “Tomographic testing and validation of probabilistic circuits,” in 2011 Sixteenth IEEE European Test Symposium, pp. 63–68, IEEE, 2011. [26] M. A. Nielsen and I. Chuang, “Quantum computation and quantum information,”2002. [27] C.-H. Wu, C.-Y. Hsieh, J.-Y. Li, and J. C.-M. Li, “qatg: Automatic test generation for quantum circuits,” in 2020 IEEE International Test Conference (ITC), pp. 1–10, IEEE, 2020. [28] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Randomized benchmarking of quantum gates,” Physical Review A, vol. 77, no. 1, p. 012307, 2008. [29] E. Magesan, J. M. Gambetta, and J. Emerson, “Characterizing quantum gates via randomized benchmarking,” Physical Review A, vol. 85, no. 4, p. 042311, 2012. [30] E. Hellinger, “Neue begründung der theorie quadratischer formen von unendlichvielen veränderlichen.,” Journal für die reine und angewandte Mathematik, vol. 1909, no. 136, pp. 210–271, 1909. [31] D. L. Streiner, “Maintaining standards: differences between the standard deviation and standard error, and when to use each,” The Canadian journal of psychiatry, vol. 41, no. 8, pp. 498–502, 1996. [32] H. F. Inman and E. L. Bradley Jr, “The overlapping coefficient as a measure of agreement between probability distributions and point estimation of the overlap of two normal densities,” Communications in Statistics-theory and Methods, vol. 18, no. 10, pp. 3851–3874, 1989. [33] M. S. Anis, H. Abraham, R. A. AduOffei, G. Agliardi, M. Aharoni, I. Y. Akhalwaya, G. Aleksandrowicz, T. Alexander, et al., “Qiskit: An open-source framework for quantum computing,” 2021. [34] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM Journal on computing, vol. 26, no. 5, pp. 1411–1473, 1997. [35] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gambetta, “Validating quantum computers using randomized model circuits,” Physical Review A, vol. 100, no. 3, p. 032328, 2019. [36] 5-qubit backend: IBM Q team, “IBM Q 5 manila backend specification V1.0.34.”Retrieved from https://quantum-computing.ibm.com. [37] 7-qubit backend: IBM Q team, “IBM Q 7 Perth backend specification V1.1.26.”Retrieved from https://quantum-computing.ibm.com. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84957 | - |
dc.description.abstract | 由於受到雜訊和錯誤的影響,目前在雜訊中等規模量子 (NISQ) 電路不保證能產生正確的輸出。在這篇論文中,我們提出一個針對 NISQ 電路的診斷技術,我們的技術包含靜態診斷和動態診斷。靜態診斷使用了錯誤字典,其中包含了每一個錯誤的輸出機率分布。動態診斷使用二分搜尋法來找到量子電路的錯誤位置。我們用 Qiskit 模擬器配合實際的雜訊模型來展示我們的技術。我們用 15 個基準電路並且插入么正錯誤和非么正錯誤來評估實驗。模擬結果顯示平均正確率和診斷解析度分別為 97.70% 和 1.81。我們也在 IBM Q 上的量子設備做實驗。實驗結果顯示我們的方法在真實的量子電路設備上是可行的。 | zh_TW |
dc.description.abstract | Currently, noisy intermediate-scale quantum (NISQ) circuits may not always generate correct outputs due to noise and faults. In this work, we propose a diagnosis technique for NISQ circuits. The proposed technique contains static diagnosis and dynamic diagnosis. Static diagnosis uses a fault dictionary that contains output probability distribution for each fault. Dynamic diagnosis uses binary search to find the accurate fault locations of faulty quantum circuits. We demonstrate our technique using the Qiskit simulator with realistic noise models. We evaluate 15 benchmarks with unitary and non-unitary faults injected. Simulation results show that the average accuracy and resolution are 97.70% and 1.81. Experiments on the IBM Q devices have also been performed, and results show that our technique is feasible on real quantum circuit devices. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:34:51Z (GMT). No. of bitstreams: 1 U0001-2208202223595400.pdf: 2686468 bytes, checksum: 76edca33e08b0486df57ba60df2aeeba (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 致謝 i 摘要 ii Abstract iii Contents iv List of Figures vi List of Tables viii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Proposed Techniques 5 1.3 Contributions 6 1.4 Organization 7 Chapter 2 Background 8 2.1 Quantum Circuit Concepts 8 2.2 Fault Modeling of QC 11 2.3 Past Research for QC Diagnosis 13 Chapter 3 Proposed Technique 17 3.1 Fault Dictionary Generation 19 3.2 Static Diagnosis 21 3.3 Partial QC Dictionary Generation 24 3.4 Dynamic Diagnosis 26 Chapter 4 Experimental Results 31 4.1 Experimental Setup 31 4.2 Diagnosis Results of Simulation 35 4.3 Diagnosis Results of Backend Noise Model 43 4.4 Diagnosis Results of IBM Q Device 46 Chapter 5 Discussion 47 Chapter 6 Conclusion 49 References 50 | |
dc.language.iso | en | |
dc.title | 在雜訊中等規模量子世代之量子電路診斷 | zh_TW |
dc.title | Diagnosis of Quantum Circuits in the NISQ Era | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃俊郎(Jiun-Lang Huang),洪士灝(Shih-Hao Hung) | |
dc.subject.keyword | 雜訊中等規模量子,量子電路,錯誤診斷, | zh_TW |
dc.subject.keyword | noisy intermediate-scale quantum,quantum circuit,fault diagnosis, | en |
dc.relation.page | 54 | |
dc.identifier.doi | 10.6342/NTU202202678 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-08-23 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
dc.date.embargo-lift | 2022-08-31 | - |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2208202223595400.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.62 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。