請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84950完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 歐陽彥正(Yen-Jen Oyang) | - |
| dc.contributor.author | Rou-Jun Liu | en |
| dc.contributor.author | 劉柔均 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:34:28Z | - |
| dc.date.copyright | 2022-09-06 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2022-08-22 | - |
| dc.identifier.citation | [1] Ross, S. M. (2014). Introduction to probability models. Academic press. [2] Chainey, S., Tompson, L., & Uhlig, S. (2008). The utility of hotspot mapping for predicting spatial patterns of crime. Security journal, 21(1), 4-28. [3] Cleasby, I. R., Owen, E., Wilson, L., Wakefield, E. D., O'Connell, P., & Bolton, M. (2020). Identifying important at-sea areas for seabirds using species distribution models and hotspot mapping. Biological Conservation, 241, 108375. [4] Ngada, T., & Bowers, K. (2018). Spatial and temporal analysis of crude oil theft in the Niger Delta. Security Journal, 31(2), 501-523. [5] Guevara, C., & Peñas, M. S. (2020). Surveillance Routing of COVID-19 Infection Spread Using an Intelligent Infectious Diseases Algorithm. IEEE Access, 8, 201925-201936. [6] Tukey, J. W. (1977). Exploratory data analysis (Vol. 2, pp. 131-160). [7] Gramacki, A. (2018). Nonparametric kernel density estimation and its computational aspects (Vol. 37). Cham: Springer International Publishing. [8] Friedman, J., Hastie, T., & Tibshirani, R. (2001). The Elements of Statistical Learning (Vol. 1, No. 10). New York, NY, USA: Springer series in statistics. ISBN-13: 978-0387848570 [9] Rosenblatt, M. (1956), Remarks on some nonparametric estimates of a density function, The Annals of Mathematical Statistics 27, 832–837. [10] Parzen, E. (1962), On estimation of a probability density function and mode, The Annals of Mathematical Statistics 33, 1065–1076. [11] Izenman, A.J. (1991), Recent Developments in Nonparametric Density Estimation, Journal of the American Statistical Association, 86, 205-224. [12] Simonoff, J.S. (1996), Smoothing Methods in Statistics, New York: Springer-Verl [13] Silverman, B. W. (1986), Density estimation for statistics and data analysis, Chapman and Hall, London. [14] Scott, D.W. (1992). Multivariate Density Estimation. Theory, Practice and Visualization. New York: Wiley. [15] Sheather, S. J. and M. C. Jones (1991), A reliable data-based bandwidth selection method for kernel density estimation, Journal of the Royal Statistical Society, Series B 53, 683–690 [16] Rudemo, M. (1982), Empirical choice of histograms and kernel density estimators, Scandinavia Journal of Statistics 9, 65–78. [17] Bowman, A. W. (1984), An alternative method of cross-validation for the smoothing of density estimates, Biometrika 71, 353–360. [18] Scott, D. W. and G. R. Terrell (1987), Biased and unbiased cross-validation in density estimation, Journal of the American Statistical Association 82, 1131–1146. [19] Hall, P., Marron, J., Park, B.U., 1992. Smoothed cross-validation. Probab. Theory Related Fields 92 (1), 1–20. [20] Berlinet, A., Biau, G., & Rouvière, L. (2005). Optimal L1 bandwidth selection for variable kernel density estimates. Statistics & probability letters, 74(2), 116-128. [21] Breiman, L., Meisel, W., & Purcell, E. (1977). Variable kernel estimates of multivariate densities. Technometrics, 19(2), 135-144. [22] I. Abramson. (1982). On bandwidth variation in kernel estimates. The Annals of Statistics, 10:1217–1223 [23] Zougab, N., Adjabi, S., & Kokonendji, C. C. (2014). Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation. Computational Statistics & Data Analysis, 75, 28-38. [24] Zhang, X., King, M. L., & Hyndman, R. J. (2006). A Bayesian approach to bandwidth selection for multivariate kernel density estimation. Computational Statistics & Data Analysis, 50(11), 3009-3031. [25] O’Brien, T. A., Kashinath, K., Cavanaugh, N. R., Collins, W. D., & O’Brien, J. P. (2016). A fast and objective multidimensional kernel density estimation method: fastKDE. Computational Statistics & Data Analysis, 101, 148-160. [26] Wand, M. P., & Jones, M. C. (1994). Kernel smoothing. CRC press. [27] Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). New York: springer. [28] Scott, L. M., & Janikas, M. V. (2010). Spatial statistics in ArcGIS. In Handbook of applied spatial analysis (pp. 27-41). Springer, Berlin, Heidelberg. [29] Y.J. Oyang, Y.Y. Ou, S.C. Hwang, C.Y. Chenl and D. T.H. Chang. (2005). Data Classification with a Relaxed Model of Variable Kernel Density Estimation. in n Proc. IEEE Int. Joint Conf. Neural Netw. [30] Chun-Chieh Yang. (2019). Kernel Density Based Probability Estimation for Data Classifiers. Master thesis [31] Hall, P., Sheather, S. J., Jones, M. C., & Marron, J. S. (1991). On optimal data-based bandwidth selection in kernel density estimation. Biometrika, 78(2), 263-269. [32] Nisa, K. (2019, September). The Optimal Bandwidth for Kernel Density Estimation of Skewed Distribution: A Case Study on Survival Data of Cancer Patients. Prosiding Seminar Nasional Metode Kuantatif Tahun 2017 ISBN 978-602-98559-3-7. [33] Moreira, C., & Van Keilegom, I. (2013). Bandwidth selection for kernel density estimation with doubly truncated data. Computational Statistics & Data Analysis, 61, 107-123. [34] R.E. Bellman. (1957) Dynamic programming. Princeton University Press [35] Fodor, I. K. (2002). A survey of dimension reduction techniques (No. UCRL-ID-148494). Lawrence Livermore National Lab., CA (US). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84950 | - |
| dc.description.abstract | 核心密度估計方法(Kernel Density Estimation)是常見的無母數統計方法之一,相較於有母數統計,其不需要預先知道資料的分布假設,因此使用上具有較高的彈性。在核密度分析中,帶寬的選擇是影響結果的重要因素,因此如何挑選合適的帶寬成為重要的討論議題。 本研究改進 RVKDE 方法,使用最大概似估計法(Maximum Likelihood Estimation)來找出用來移動至經驗法則的最佳倍數,在多種人工合成資料集上實驗,將我們的方法與經驗法則、 Scott’s 法則、 Abramson提出的方法以及 ArcGIS 之方法進行比較,結果顯示雖然使用MLE 無法每一次都完全精準地找出真正的最優倍數,但距離正確的倍數亦不遠,且積分均方誤差(Mean Integrated Square Error)表現明顯優於其他常用的方法,估計結果的準確度大幅上升。 | zh_TW |
| dc.description.abstract | Kernel density estimation (KDE) is one of the most popular non-parametric methods to construct heatmap analysis. Due to the great influence on the result performance, the choice of bandwidth has become an important issue to discuss. This study improves Relaxed Variable Kernel Density Estimation (RVKDE) by implementing maximum likelihood estimation (MLE) to select the optimal multiple value of adjusted normal reference rule when shifting the median of bandwidth. We compare the performance of our method with the normal reference rule, Scott’s rule, the method proposed by Abramson, the method applied in ArcGIS, the original RVKDE method, and the improved ORAKDE method in 2-D and 3-D experiments. Although sometimes using MLE cannot precisely find out the exact optimal multiple number, it would not be far from the correct one and objectively provides an instructive suggestion of deciding the value. The measurement criteria Mean Integrated Square Error (MISE) of our method significantly outperforms than other methods, typically for the data whose patterns obviously differ from normal distribution. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:34:28Z (GMT). No. of bitstreams: 1
U0001-2208202213401800.pdf: 1341817 bytes, checksum: c471567014e3bee8ecbbee217ebe3e2e (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | ABSTRACT ..................................................................... I 中文摘要 ..................................................................... II TABLE OF CONTENTS ........................................................... III LIST OF FIGURES .............................................................. V LIST OF TABLES ............................................................... VI CHAPTER 1 INTRODUCTION ....................................................... 1 1.1 Background ............................................................... 1 1.1.1 Density Estimation ..................................................... 1 1.1.2 Kernel Density Estimation .............................................. 2 1.2 Aim of The Study ......................................................... 4 1.3 Structure of the Thesis .................................................. 4 CHAPTER 2 LITERATURE REVIEW .................................................. 5 2.1 Kernel Function .......................................................... 5 2.2 Bandwidth Selection ...................................................... 6 2.2.1 Normal Reference Rule .................................................. 7 2.2.2 Scott’s Rule ........................................................... 8 2.2.3 Abramson ............................................................... 8 2.2.4 ArcGIS ................................................................. 9 2.2.5 RVKDE .................................................................. 10 2.2.6 ERAKDE ................................................................. 11 CHAPTER 3 METHOD ............................................................. 13 3.1 The Optimization Procedure ............................................... 13 3.2 Implementation Practices ................................................. 15 3.3 Performance Measurement .................................................. 16 CHAPTER 4 SIMULATION EXPERIMENTS ............................................. 17 4.1 Distributions of the 2-D datasets ........................................ 17 4.2 Distributions of the 3-D datasets ........................................ 20 4.3 Results .................................................................. 23 CHAPTER 5 DISCUSSION AND FUTURE WORK ......................................... 28 5.1 Discussion ............................................................... 28 5.2 Future Work .............................................................. 29 REFERENCE .................................................................... 30 APPENDIXⅠ .................................................................... 34 APPENDIXⅡ .................................................................... 36 | - |
| dc.language.iso | en | - |
| dc.subject | 核密度估計 | zh_TW |
| dc.subject | 帶寬選擇 | zh_TW |
| dc.subject | 最大概似估計法 | zh_TW |
| dc.subject | Kernel Density Estimation | en |
| dc.subject | Maximum Likelihood Estimation | en |
| dc.subject | Bandwidth Selection | en |
| dc.title | 針對變量核心密度估計之帶寬設定進行最佳化之研究 | zh_TW |
| dc.title | A Study on Optimal Bandwidth Settings for Adaptive Kernel Density Estimation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡政安(Chen-An Tsai catsai@ntu.edu.tw) | - |
| dc.subject.keyword | 核密度估計,帶寬選擇,最大概似估計法, | zh_TW |
| dc.subject.keyword | Kernel Density Estimation,Bandwidth Selection,Maximum Likelihood Estimation, | en |
| dc.relation.page | 37 | - |
| dc.identifier.doi | 10.6342/NTU202202644 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2022-08-23 | - |
| dc.contributor.author-college | 共同教育中心 | zh_TW |
| dc.contributor.author-dept | 統計碩士學位學程 | zh_TW |
| dc.date.embargo-lift | 2022-09-06 | - |
| 顯示於系所單位: | 統計碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2208202213401800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
