請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84938完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃心豪(Hsin-Haou Huang) | |
| dc.contributor.author | Po-I Chen | en |
| dc.contributor.author | 陳柏邑 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:33:46Z | - |
| dc.date.copyright | 2022-09-02 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-24 | |
| dc.identifier.citation | [1] E. M. Moya-Sanz, I. Ivañez, and S. K. Garcia-Castillo, 'Effect of the geometry in the strength of single-lap adhesive joints of composite laminates under uniaxial tensile load,' International Journal of Adhesion and Adhesives, vol. 72, pp. 23-29, 2017. [2] M. A. Eder and R. Bitsche, 'Fracture analysis of adhesive joints in wind turbine blades,' Wind Energy, vol. 18, no. 6, pp. 1007-1022, 2015. [3] Y. W. Kwon, 'Design and Analysis of Bonded Joints and Repair,' 2018. [4] M. D. Banea and L. F. da Silva, 'Adhesively bonded joints in composite materials: an overview,' Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 223, no. 1, pp. 1-18, 2009. [5] L. F. Da Silva, A. Öchsner, and R. D. Adams, 'Handbook of adhesion technology,' Springer Science & Business Media, 2011. [6] S. Budhe, M. Banea, S. De Barros, and L. Da Silva, 'An updated review of adhesively bonded joints in composite materials,' International Journal of Adhesion and Adhesives, vol. 72, pp. 30-42, 2017. [7] L. F. da Silva, P. J. das Neves, R. Adams, and J. Spelt, 'Analytical models of adhesively bonded joints—Part I: Literature survey,' International Journal of Adhesion and Adhesives, vol. 29, no. 3, pp. 319-330, 2009. [8] L. F. da Silva, P. J. das Neves, R. Adams, A. Wang, and J. Spelt, 'Analytical models of adhesively bonded joints—Part II: Comparative study,' International Journal of Adhesion and Adhesives, vol. 29, no. 3, pp. 331-341, 2009. [9] O. Volkersen, 'The rivet load distribution in lap-joints with members of constant thickness subjected to tension,' Luftfahrtforschung, vol. 15, pp. 41-47, 1938. [10] M. Goland and E. Reissner, 'The stresses in cemented joints,' 1944. [11] R. Adams and V. Mallick, 'A method for the stress analysis of lap joints,' The Journal of Adhesion, vol. 38, no. 3-4, pp. 199-217, 1992. [12] L. Tong, 'Failure of adhesive-bonded composite single lap joints with embedded cracks,' AIAA journal, vol. 36, no. 3, pp. 448-456, 1998. [13] B. Zhao, Z.-H. Lu, and Y.-N. Lu, 'Closed-form solutions for elastic stress–strain analysis in unbalanced adhesive single-lap joints considering adherend deformations and bond thickness,' International Journal of Adhesion and Adhesives, vol. 31, no. 6, pp. 434-445, 2011. [14] D. Bigwood and A. D. Crocombe, 'Elastic analysis and engineering design formulae for bonded joints,' International journal of Adhesion and Adhesives, vol. 9, no. 4, pp. 229-242, 1989. [15] X. He, 'A review of finite element analysis of adhesively bonded joints,' International Journal of Adhesion and Adhesives, vol. 31, no. 4, pp. 248-264, 2011. [16] D. Gleich, M. Van Tooren, and A. Beukers, 'Analysis and evaluation of bondline thickness effects on failure load in adhesively bonded structures,' Journal of adhesion science and technology, vol. 15, no. 9, pp. 1091-1101, 2001. [17] A. Magalhães, M. De Moura, and J. Gonçalves, 'Evaluation of stress concentration effects in single-lap bonded joints of laminate composite materials,' International journal of adhesion and adhesives, vol. 25, no. 4, pp. 313-319, 2005. [18] F. Ribeiro, R. Campilho, R. Carbas, and L. Da Silva, 'Strength and damage growth in composite bonded joints with defects,' Composites Part B: Engineering, vol. 100, pp. 91-100, 2016. [19] T. P. Lang and P. Mallick, 'Effect of spew geometry on stresses in single lap adhesive joints,' International Journal of Adhesion and adhesives, vol. 18, no. 3, pp. 167-177, 1998. [20] R. D. S. G. Campilho, M. De Moura, and J. Domingues, 'Numerical prediction on the tensile residual strength of repaired CFRP under different geometric changes,' International Journal of Adhesion and Adhesives, vol. 29, no. 2, pp. 195-205, 2009. [21] L. Grant, R. D. Adams, and L. F. da Silva, 'Experimental and numerical analysis of single-lap joints for the automotive industry,' International journal of adhesion and adhesives, vol. 29, no. 4, pp. 405-413, 2009. [22] L. Grant, R. Adams, and L. F. da Silva, 'Effect of the temperature on the strength of adhesively bonded single lap and T joints for the automotive industry,' International journal of adhesion and adhesives, vol. 29, no. 5, pp. 535-542, 2009. [23] P. Hu, X. Han, W. Li, L. Li, and Q. Shao, 'Research on the static strength performance of adhesive single lap joints subjected to extreme temperature environment for automotive industry,' International Journal of Adhesion and Adhesives, vol. 41, pp. 119-126, 2013. [24] J. Machado, E. Marques, and L. F. da Silva, 'Influence of low and high temperature on mixed adhesive joints under quasi-static and impact conditions,' Composite Structures, vol. 194, pp. 68-79, 2018. [25] Y.-B. Park, M.-G. Song, J.-J. Kim, J.-H. Kweon, and J.-H. Choi, 'Strength of carbon/epoxy composite single-lap bonded joints in various environmental conditions,' Composite Structures, vol. 92, no. 9, pp. 2173-2180, 2010. [26] R. Campilho and T. Fernandes, 'Comparative evaluation of single-lap joints bonded with different adhesives by cohesive zone modelling,' Procedia Engineering, vol. 114, pp. 102-109, 2015. [27] ABAQUS 2018 User Manual, Dessault Systemes Simulia Corp., Providence, RI, 2018. [28] R. D. Campilho, M. D. Banea, A. M. Pinto, L. F. da Silva, and A. De Jesus, 'Strength prediction of single-and double-lap joints by standard and extended finite element modelling,' International Journal of Adhesion and Adhesives, vol. 31, no. 5, pp. 363-372, 2011. [29] J. Neto, R. D. Campilho, and L. Da Silva, 'Parametric study of adhesive joints with composites,' International Journal of Adhesion and Adhesives, vol. 37, pp. 96-101, 2012. [30] W. Xu and Y. Wei, 'Strength and interface failure mechanism of adhesive joints,' International journal of adhesion and adhesives, vol. 34, pp. 80-92, 2012. [31] T. Ribeiro, R. Campilho, L. F. da Silva, and L. Goglio, 'Damage analysis of composite–aluminium adhesively-bonded single-lap joints,' Composite Structures, vol. 136, pp. 25-33, 2016. [32] Q.-G. Zeng and C. Sun, 'Novel design of a bonded lap joint,' AIAA journal, vol. 39, no. 10, pp. 1991-1996, 2001. [33] G. Fessel, J. Broughton, N. Fellows, J. Durodola, and A. Hutchinson, 'Evaluation of different lap-shear joint geometries for automotive applications,' International journal of adhesion and adhesives, vol. 27, no. 7, pp. 574-583, 2007. [34] R. Campilho, A. Pinto, M. D. Banea, R. Silva, and L. F. da Silva, 'Strength improvement of adhesively-bonded joints using a reverse-bent geometry,' Journal of Adhesion Science and Technology, vol. 25, no. 18, pp. 2351-2368, 2011. [35] M. Ashrafi, A. Ajdari, N. Rahbar, J. Papadopoulos, H. Nayeb-Hashemi, and A. Vaziri, 'Adhesively bonded single lap joints with non-flat interfaces,' International journal of adhesion and adhesives, vol. 32, pp. 46-52, 2012. [36] A. N. Kishore and N. S. Prasad, 'An experimental study of Flat-Joggle-Flat bonded joints in composite laminates,' International journal of adhesion and adhesives, vol. 35, pp. 55-58, 2012. [37] B. Beylergil, Y. Cunedioglu, and A. Aktas, 'Experimental and numerical analysis of single lap composite joints with inter-adherend fibers,' Composites Part B: Engineering, vol. 42, no. 7, pp. 1885-1896, 2011. [38] Ş. Temiz, S. Akpinar, M. Aydın, and E. Sancaktar, 'Increasing single-lap joint strength by adherend curvature-induced residual stresses,' Journal of adhesion science and technology, vol. 27, no. 3, pp. 244-251, 2013. [39] B. Haghpanah, S. Chiu, and A. Vaziri, 'Adhesively bonded lap joints with extreme interface geometry,' International Journal of Adhesion and Adhesives, vol. 48, pp. 130-138, 2014. [40] R. Hunter-Alarcon, J. Leyrer, E. Leal, A. Vizan, J. Perez, and L. Da Silva, 'Influence of dissimilar composite adherends on the mechanical adhesion of bonded joints for small blade wind turbine applications,' International Journal of Adhesion and Adhesives, vol. 83, pp. 178-183, 2018. [41] 'ISO 12215-5 Small craft — Hull construction and scantlings — Part 5: Design pressures for monohulls, design stresses, scantlings determination,' 2019. [42] [ASTM] American Society for Testing and Materials, 'D5868-01, Standard test method for lap shear adhesion for fiber reinforced plastic (FRP) bonding,' Annual Book of ASTM standards, vol. vol. 15, 2001. [43] A. A. S. f. T. a. Materials, 'D5573-99. Standard practice for classifying failure modes in fiber-reinforced-plastic (FRP) joints,' Annual book of ASTM standards, vol. vol. 15, 2005. [44] Kremer Pigmente, 'Araldit® AV 138 M-1 with Hardener HV 998 Two component paste-like epoxy adhesive,' Available: http://www.kremer-pigmente.com/media/pdf/97930e.pdf, [Access: 2017 July 1]. [45] D. Astm, '5573-99. Standard practice for classifying failure modes in fiber-reinforced-plastic (FRP) joints,' Annual book of ASTM standards, vol. 15, no. 03, 2002. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84938 | - |
| dc.description.abstract | 複合材料因為輕巧與堅韌等特性,已廣泛應用於許多產業,如航太工業、汽車產業、造船工業以及風力發電等。膠合法為連結複合材料的主要方法,膠合法擁有降低應力集中、輕量化等優點,但膠合區域為整體結構最為脆弱之處,許多學者也致力於如何提升接點的極限負載,近年來以改變膠合接點的外型(如試片導角、波浪形試片等)成為研究方向之一。本研究設計出非平表面幾何之複合材料單搭接點,應用複合材料Seemann真空灌注製程(Seemann Composite Resin Infusion Molding Process, SCRIMP),在乾毯纖維下方埋入具有硬度的鐵線,鐵線可以在真空製程中被大氣壓力形成非平坦表面,注入樹脂後熱固化形成一具有非平坦表面幾何的複合材料,並參照美國材料試驗學會(American Society for Testing and Materials, ASTM)所制定的複合材料膠合試片測試標準ASTM D5868-01製作單搭接點膠合試片。本研究不僅透過大部分文獻作者使用的實驗與模擬印證方法,並且使用高速攝影機觀察裂紋生長情形。本研究改變的參數有:加強材位置、結構膠性質、環境因素、加強材直徑以及結構膠厚度,並且以一般傳統平坦接點為對照組,實驗結果為非平表面試片能有效提升極限負載,並探討提升極限負載之原因,尋找出最適合的非平表面幾何,實驗結果、模擬分析與裂紋傳遞之間有著良好的一致性。本研究提出之非平表面幾何製作工藝,不需額外訂製新模具,因其方便性、較佳的極限負載表現,有利於複合材料應用在相關產業中的可行性。 | zh_TW |
| dc.description.abstract | Composite materials have been widely applied in many industries, such as aerospace, automotive, shipbuilding and wind power generation due to their high strength to weight ratio properties. Adhesively bonded joint is main method for connecting composite materials; whilst this has the advantage of minimizing stress concentrations and being lightweight, the bonding area is the weakest link of the overall structure. Many researchers have investigated the means of enhancing the load carrying capacity of the bonded joint such as changing the surface geometry (e.g. wavy, taper, fillet) to decrease stress concentration and improve the tensile load of the bonded area. In this work, the reinforced materials were embedded in the glass-fiber lamina and formed a non-flat geometry under the Seemann Composite Resin Infused Molding Process (SCRIMP). The specimens were fabricated by following the ASTM D5868-01 standard. Specimens were investigated experimentally, numerically. Crack propagation under tensile test was observed using high speed camera imagery to help explaining the mechanism of improving the joint load capabilities. Parametric studies, involving changing the reinforcing material arrangement, the adhesive’s properties, ambient temperatures, the diameter of the reinforcing materials and the thickness of the adhesive were investigated. The experimental, simulation and crack propagation results are all in good agreement. This research, commonplace in the composite material fabrication general process, benefits the fabrication of non-flat surface structure without requiring special molds for determining better load performance data. Overall, it greatly advances the feasibility of the use of composite materials in multiple related industries. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:33:46Z (GMT). No. of bitstreams: 1 U0001-0207202213332400.pdf: 10688797 bytes, checksum: 7ba16662eea2a0cb6169d626cffac960 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 致謝 ii 中文摘要 iii Abstract iv 目錄 v 圖目錄 viii 表目錄 xiv 第一章 簡介 1 1.1. 研究動機 1 1.2. 研究背景 3 1.3. 研究目的 4 1.4. 重要性與貢獻 5 1.5. 名詞對照與符號說明 6 1.5.1. 英文專有名詞與中文翻譯對照 6 1.5.2. 符號說明表 7 第二章 文獻探討 8 2.1. 膠合接點數學模型 9 2.2. 應力分析與不同參數探討 14 2.3. 非傳統型幾何接點 22 第三章 研究方法 28 3.1. 研究流程 28 3.2. 實驗方法 28 3.2.1. 複合材料製作 31 3.2.2. 單搭接點試片製作 33 3.2.3. 拉伸試驗 41 3.3. 有限元素分析法 42 3.3.1. 材料參數 43 3.3.2. 邊界條件與負載設定 44 3.3.3. 網格劃分 46 3.3.4. 應力分析 47 第四章 研究結果 49 4.1 平坦膠合試片 49 4.1.1 試片固化溫度選擇 50 4.1.2 傳統平坦試片 53 4.1.3 結構膠性質 54 4.1.4 環境因素 57 4.1.5 結構膠厚度 62 4.2 非平表面膠合試片 66 4.2.1. 加強材位置 66 4.2.2. 結構膠性質 69 4.2.3. 環境因素 70 4.2.4. 加強材直徑 72 4.2.5. 結構膠厚度 75 第五章 討論 81 5.1 試片極限負載關係 81 5.1.1. 結構膠性質 81 5.1.2. 環境因素 82 5.1.3. 非平試片-改變加強材埋設位置 84 5.1.4. 非平試片-改變加強材直徑 86 5.1.5. 結構膠厚度 88 5.2 裂紋生長分析 91 5.3 應力分析 98 5.3.1. 未破壞應力分析 99 5.3.2. 半破壞應力分析 101 第六章 結論與未來展望 105 6.1 結論 105 6.2 未來展望 107 第七章 參考文獻 109 附錄 113 試片尺寸 113 拉伸試驗力與位移圖 124 | |
| dc.language.iso | zh-TW | |
| dc.subject | 複合材料 | zh_TW |
| dc.subject | 應力分析 | zh_TW |
| dc.subject | 裂紋傳遞 | zh_TW |
| dc.subject | 非平坦表面幾何 | zh_TW |
| dc.subject | 單搭接接點 | zh_TW |
| dc.subject | single lap joint | en |
| dc.subject | stress analysis | en |
| dc.subject | non-flat geometry | en |
| dc.subject | composite materials | en |
| dc.subject | crack propagation | en |
| dc.title | 非平坦表面幾何應用於複合材料膠合接點之可行性探討 | zh_TW |
| dc.title | Feasibility of Non-Flat Interface Geometry Applied to Composite Bonded Joints | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 宋家驥(Chia-Chi Sung),楊舜涵(Shun-Han Yang),黃勝翊(Sam Huang) | |
| dc.subject.keyword | 複合材料,單搭接接點,非平坦表面幾何,裂紋傳遞,應力分析, | zh_TW |
| dc.subject.keyword | composite materials,single lap joint,non-flat geometry,crack propagation,stress analysis, | en |
| dc.relation.page | 133 | |
| dc.identifier.doi | 10.6342/NTU202201247 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-24 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-09-02 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0207202213332400.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 10.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
