請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84936
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蕭信宏(Shin-Hong Shiao) | |
dc.contributor.author | Chun-Ting Yeh | en |
dc.contributor.author | 葉峻廷 | zh_TW |
dc.date.accessioned | 2023-03-19T22:33:40Z | - |
dc.date.copyright | 2022-10-05 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-23 | |
dc.identifier.citation | 1. WHO, World malaria report 2021. 2021, Geneva: World Health Organization. 2. Kantele, A. and T.S. Jokiranta, Review of cases with the emerging fifth human malaria parasite, Plasmodium knowlesi. Clin Infect Dis, 2011. 52(11): p. 1356-62. 3. Global Partnership to Roll Back, M., Antimalarial drug combination therapy : report of a WHO technical consultation, 4-5 April 2001. 2001, World Health Organization: Geneva. 4. Balikagala, B., et al., Evidence of Artemisinin-Resistant Malaria in Africa. New England Journal of Medicine, 2021. 385(13): p. 1163-1171. 5. Dondorp, A.M., et al., Artemisinin resistance in Plasmodium falciparum malaria. The New England journal of medicine, 2009. 361(5): p. 455-467. 6. Uwimana, A., et al., Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nature Medicine, 2020. 26(10): p. 1602-1608. 7. WHO, Zika virus: an epidemiological update Weekly Epidemiological Record, 2017. 92(15): p. 188-192. 8. Mlakar, J., et al., Zika Virus Associated with Microcephaly. New England Journal of Medicine, 2016. 374(10): p. 951-958. 9. Wilson, A.L., et al., The importance of vector control for the control and elimination of vector-borne diseases. PLOS Neglected Tropical Diseases, 2020. 14(1): p. e0007831. 10. Bhatt, S., et al., The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature, 2015. 526(7572): p. 207-211. 11. Richards, S.L., et al., Assessing Insecticide Resistance in Adult Mosquitoes: Perspectives on Current Methods. Environmental health insights, 2020. 14: p. 1178630220952790-1178630220952790. 12. Moreira, L.A., et al., A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium. Cell, 2009. 139(7): p. 1268-1278. 13. Werren, J.H., L. Baldo, and M.E. Clark, Wolbachia: master manipulators of invertebrate biology. Nature Reviews Microbiology, 2008. 6(10): p. 741-751. 14. Bourtzis, K., Wolbachia-based technologies for insect pest population control. Adv Exp Med Biol, 2008. 627: p. 104-13. 15. Ross, P.A., et al., An elusive endosymbiont: Does Wolbachia occur naturally in Aedes aegypti? Ecology and Evolution, 2020. 10(3): p. 1581-1591. 16. Zabalou, S., et al., Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proceedings of the National Academy of Sciences, 2004. 101(42): p. 15042-15045. 17. Flores, H.A., et al., Multiple Wolbachia strains provide comparative levels of protection against dengue virus infection in Aedes aegypti. PLOS Pathogens, 2020. 16(4): p. e1008433. 18. Walker, T., et al., The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature, 2011. 476(7361): p. 450-453. 19. Utarini, A., et al., Efficacy of Wolbachia-Infected Mosquito Deployments for the Control of Dengue. New England Journal of Medicine, 2021. 384(23): p. 2177-2186. 20. Lambrechts, L., et al., Assessing the epidemiological effect of wolbachia for dengue control. The Lancet Infectious Diseases, 2015. 15(7): p. 862-866. 21. Burt, A., Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proceedings of the Royal Society of London. Series B: Biological Sciences, 2003. 270(1518): p. 921-928. 22. Hammond, A.M. and R. Galizi, Gene drives to fight malaria: current state and future directions. Pathogens and Global Health, 2017. 111(8): p. 412-423. 23. Galizi, R., et al., A CRISPR-Cas9 sex-ratio distortion system for genetic control. Scientific Reports, 2016. 6(1): p. 31139. 24. Hammond, A., et al., A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nature Biotechnology, 2016. 34(1): p. 78-83. 25. Gantz Valentino, M., et al., Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proceedings of the National Academy of Sciences, 2015. 112(49): p. E6736-E6743. 26. Guzman, M.G., et al., Dengue: a continuing global threat. Nature Reviews Microbiology, 2010. 8(12): p. S7-S16. 27. WHO, Dengue and severe dengue. World Health Organization, 2022. 28. Bhatt, S., et al., The global distribution and burden of dengue. Nature, 2013. 496(7446): p. 504-7. 29. Lwande, O.W., et al., Globe-Trotting Aedes aegypti and Aedes albopictus: Risk Factors for Arbovirus Pandemics. Vector-Borne and Zoonotic Diseases, 2019. 20(2): p. 71-81. 30. Guzman, M.G. and E. Harris, Dengue. The Lancet, 2015. 385(9966): p. 453-465. 31. Katzelnick, L.C., et al., Antibody-dependent enhancement of severe dengue disease in humans. Science, 2017. 358(6365): p. 929-932. 32. Huang, X., et al., Antibody-dependent enhancement of dengue virus infection inhibits RLR-mediated Type-I IFN-independent signalling through upregulation of cellular autophagy. Scientific Reports, 2016. 6(1): p. 22303. 33. Adams, L.E., S. Waterman, and G. Paz-Bailey, Vaccination for Dengue Prevention. JAMA, 2021. 34. Kaptein, S.J.F., et al., A pan-serotype dengue virus inhibitor targeting the NS3–NS4B interaction. Nature, 2021. 598(7881): p. 504-509. 35. De La Guardia, C. and R. Lleonart, Progress in the identification of dengue virus entry/fusion inhibitors. Biomed Res Int, 2014. 2014: p. 825039. 36. Sun, F.-C., et al., Localization of GRP78 to mitochondria under the unfolded protein response. The Biochemical journal, 2006. 396(1): p. 31-39. 37. Matsumoto, A. and P.C. Hanawalt, Histone H3 and heat shock protein GRP78 are selectively cross-linked to DNA by photoactivated gilvocarcin V in human fibroblasts. Cancer Res, 2000. 60(14): p. 3921-6. 38. Ni, M., et al., Regulation of PERK Signaling and Leukemic Cell Survival by a Novel Cytosolic Isoform of the UPR Regulator GRP78/BiP. PLOS ONE, 2009. 4(8): p. e6868. 39. Zhang, Y., et al., Cell Surface Relocalization of the Endoplasmic Reticulum Chaperone and Unfolded Protein Response Regulator GRP78/BiP *. Journal of Biological Chemistry, 2010. 285(20): p. 15065-15075. 40. Ibrahim, I.M., D.H. Abdelmalek, and A.A. Elfiky, GRP78: A cell's response to stress. Life sciences, 2019. 226: p. 156-163. 41. Cho, D.-Y., et al., Molecular Chaperone GRP78/BiP Interacts with the Large Surface Protein of Hepatitis B Virus In Vitro and In Vivo. Journal of Virology, 2003. 77(4): p. 2784-2788. 42. Chu, H., et al., Middle East respiratory syndrome coronavirus and bat coronavirus HKU9 both can utilize GRP78 for attachment onto host cells. Journal of Biological Chemistry, 2018. 293(30): p. 11709-11726. 43. Jindadamrongwech, S., C. Thepparit, and D.R. Smith, Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch Virol, 2004. 149(5): p. 915-27. 44. Peña, J. and E. Harris, Dengue virus modulates the unfolded protein response in a time-dependent manner. J Biol Chem, 2011. 286(16): p. 14226-36. 45. Lee, Y.-R., et al., Dengue virus-induced ER stress is required for autophagy activation, viral replication, and pathogenesis both in vitro and in vivo. Scientific Reports, 2018. 8(1): p. 489. 46. Wu, Y.-P., et al., Japanese encephalitis virus co-opts the ER-stress response protein GRP78 for viral infectivity. Virology Journal, 2011. 8(1): p. 128. 47. Limjindaporn, T., et al., Interaction of dengue virus envelope protein with endoplasmic reticulum-resident chaperones facilitates dengue virus production. Biochemical and Biophysical Research Communications, 2009. 379(2): p. 196-200. 48. Songprakhon, P., et al., Human glucose-regulated protein 78 modulates intracellular production and secretion of nonstructural protein 1 of dengue virus. Journal of General Virology, 2018. 99(10): p. 1391-1406. 49. Chen, T.H., et al., XBP1-Mediated BiP/GRP78 Upregulation Copes with Oxidative Stress in Mosquito Cells during Dengue 2 Virus Infection. Biomed Res Int, 2017. 2017: p. 3519158. 50. Bai, Y. and S.W. Englander, Future directions in folding: The multi-state nature of protein structure. Proteins: Structure, Function, and Bioinformatics, 1996. 24(2): p. 145-151. 51. Kopito, R.R., Aggresomes, inclusion bodies and protein aggregation. Trends in Cell Biology, 2000. 10(12): p. 524-530. 52. Lamark, T. and T. Johansen, Aggrephagy: selective disposal of protein aggregates by macroautophagy. International journal of cell biology, 2012. 2012: p. 736905-736905. 53. Rüdiger, S., et al., Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. The EMBO Journal, 1997. 16(7): p. 1501-1507. 54. Shiber, A. and T. Ravid, Chaperoning Proteins for Destruction: Diverse Roles of Hsp70 Chaperones and their Co-Chaperones in Targeting Misfolded Proteins to the Proteasome. Biomolecules, 2014. 4: p. 704-24. 55. Kozutsumi, Y., et al., The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature, 1988. 332(6163): p. 462-464. 56. Tokuriki, N. and D.S. Tawfik, Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature, 2009. 459(7247): p. 668-673. 57. Pohl, C. and I. Dikic, Cellular quality control by the ubiquitin-proteasome system and autophagy. Science, 2019. 366(6467): p. 818-822. 58. Hara, T., et al., Rer1 and calnexin regulate endoplasmic reticulum retention of a peripheral myelin protein 22 mutant that causes type 1A Charcot-Marie-Tooth disease. Scientific reports, 2014. 4: p. 6992. 59. Dikic, I., Proteasomal and Autophagic Degradation Systems. Annual Review of Biochemistry, 2017. 86(1): p. 193-224. 60. Khaminets, A., C. Behl, and I. Dikic, Ubiquitin-Dependent And Independent Signals In Selective Autophagy. Trends in Cell Biology, 2016. 26(1): p. 6-16. 61. Rogov, V., et al., Interactions between Autophagy Receptors and Ubiquitin-like Proteins Form the Molecular Basis for Selective Autophagy. Molecular Cell, 2014. 53(2): p. 167-178. 62. Wu, Z., et al., Regulatory Mechanisms of Vitellogenesis in Insects. Frontiers in Cell and Developmental Biology, 2021. 8. 63. Raikhel, A.S., et al., Molecular biology of mosquito vitellogenesis: from basic studies to genetic engineering of antipathogen immunity. Insect Biochemistry and Molecular Biology, 2002. 32(10): p. 1275-1286. 64. Dhara, A., et al., Ovary ecdysteroidogenic hormone functions independently of the insulin receptor in the yellow fever mosquito, Aedes aegypti. Insect Biochemistry and Molecular Biology, 2013. 43(12): p. 1100-1108. 65. Hansen, I.A., et al., Target of rapamycin-mediated amino acid signaling in mosquito anautogeny. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(29): p. 10626. 66. Park, J.-H., et al., GATA Factor Translation Is the Final Downstream Step in the Amino Acid/Target-of-Rapamycin-mediated Vitellogenin Gene Expression in the Anautogenous Mosquito Aedes aegypti*. Journal of Biological Chemistry, 2006. 281(16): p. 11167-11176. 67. Hansen, I.A., et al., Target of Rapamycin-dependent Activation of S6 Kinase Is a Central Step in the Transduction of Nutritional Signals during Egg Development in a Mosquito*. Journal of Biological Chemistry, 2005. 280(21): p. 20565-20572. 68. Sappington, T.W., et al., Molecular characterization of the mosquito vitellogenin receptor reveals unexpected high homology to the Drosophila yolk protein receptor. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(17): p. 8934-8939. 69. Hansen, I., et al., Four-way regulation of mosquito yolk protein precursor genes by juvenile hormone-, ecdysone-, nutrient-, and insulin-like peptide signaling pathways. Frontiers in Physiology, 2014. 5(103). 70. Avarre, J.-C., et al., Relationship Between Vitellogenin and Vitellin in a Marine Shrimp (Penaeus semisulcatus) and Molecular Characterization of Vitellogenin Complementary DNAs1. Biology of Reproduction, 2003. 69(1): p. 355-364. 71. Weng, S.C. and S.H. Shiao, The unfolded protein response modulates the autophagy-mediated egg production in the mosquito Aedes aegypti. Insect Mol Biol, 2020. 29(4): p. 404-416. 72. Luo, M., et al., Juvenile hormone differentially regulates two Grp78 genes encoding protein chaperones required for insect fat body cell homeostasis and vitellogenesis. J Biol Chem, 2017. 292(21): p. 8823-8834. 73. Ambrose, R.L. and J.M. Mackenzie, West Nile virus differentially modulates the unfolded protein response to facilitate replication and immune evasion. J Virol, 2011. 85(6): p. 2723-32. 74. Yu, C.Y., et al., Flavivirus infection activates the XBP1 pathway of the unfolded protein response to cope with endoplasmic reticulum stress. J Virol, 2006. 80(23): p. 11868-80. 75. Sessions, O.M., et al., Discovery of insect and human dengue virus host factors. Nature, 2009. 458(7241): p. 1047-1050. 76. Hafirassou, M.L., et al., A Global Interactome Map of the Dengue Virus NS1 Identifies Virus Restriction and Dependency Host Factors. Cell Reports, 2017. 21(13): p. 3900-3913. 77. Dudek, J., et al., Functions and pathologies of BiP and its interaction partners. Cell Mol Life Sci, 2009. 66(9): p. 1556-69. 78. Wati, S., et al., Dengue Virus Infection Induces Upregulation of GRP78, Which Acts To Chaperone Viral Antigen Production. Journal of Virology, 2009. 83(24): p. 12871-12880. 79. Rückert, C. and G.D. Ebel, How Do Virus-Mosquito Interactions Lead to Viral Emergence? Trends in parasitology, 2018. 34(4): p. 310-321. 80. Chen, H.-H., et al., AR-12 suppresses dengue virus replication by down-regulation of PI3K/AKT and GRP78. Antiviral Research, 2017. 142: p. 158-168. 81. Liu, W., et al., How Physical Factors Coordinate Virus Infection: A Perspective From Mechanobiology. Frontiers in Bioengineering and Biotechnology, 2021. 9. 82. Welsch, S., et al., Composition and Three-Dimensional Architecture of the Dengue Virus Replication and Assembly Sites. Cell Host & Microbe, 2009. 5(4): p. 365-375. 83. Lescar, J., et al., The Dengue Virus Replication Complex: From RNA Replication to Protein-Protein Interactions to Evasion of Innate Immunity, in Dengue and Zika: Control and Antiviral Treatment Strategies, R. Hilgenfeld and S.G. Vasudevan, Editors. 2018, Springer Singapore: Singapore. p. 115-129. 84. Khongwichit, S., et al., A functional interaction between GRP78 and Zika virus E protein. Scientific Reports, 2021. 11(1): p. 393. 85. Royle, J., et al., Glucose-Regulated Protein 78 Interacts with Zika Virus Envelope Protein and Contributes to a Productive Infection. Viruses, 2020. 12(5). 86. Nain, M., et al., GRP78 Is an Important Host Factor for Japanese Encephalitis Virus Entry and Replication in Mammalian Cells. Journal of Virology. 91(6): p. e02274-16. 87. Jheng, J.-R., J.-Y. Ho, and J.-T. Horng, ER stress, autophagy, and RNA viruses. Frontiers in Microbiology, 2014. 5. 88. Taguwa, S., et al., Defining Hsp70 Subnetworks in Dengue Virus Replication Reveals Key Vulnerability in Flavivirus Infection. Cell, 2015. 163(5): p. 1108-1123. 89. Chen, J., et al., Placental Alkaline Phosphatase Promotes Zika Virus Replication by Stabilizing Viral Proteins through BIP. mBio. 11(5): p. e01716-20. 90. Chang, C.-H., et al., The non-canonical Notch signaling is essential for the control of fertility in Aedes aegypti. PLOS Neglected Tropical Diseases, 2018. 12(3): p. e0006307. 91. Luo, M., et al., Juvenile hormone differentially regulates two Grp78 genes encoding protein chaperones required for insect fat body cell homeostasis and vitellogenesis. The Journal of biological chemistry, 2017. 292(21): p. 8823-8834. 92. Yuan, F., et al., Z-DNA binding protein 1 promotes heatstroke-induced cell death. Science, 2022. 376(6593): p. 609-615. 93. He, Y.-Z., et al., Gut-Expressed Vitellogenin Facilitates the Movement of a Plant Virus across the Midgut Wall in Its Insect Vector. mSystems. 6(3): p. e00581-21. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84936 | - |
dc.description.abstract | 登革病毒是由埃及斑蚊所傳播的蚊媒病毒,在全世界造成高度的致病率以及死亡率,為人類重要的致病原之一。由於目前並沒有針對登革病毒的有效的治療方法或是疫苗,病媒蚊控制即成為現今主要預防登革熱的方式。登革病毒在感染到下一個哺乳類動物宿主前,會在埃及斑蚊體內進行複製。其中,登革病毒會與埃及斑蚊體內的蛋白質有交互作用,此現象對於登革病毒在不同階段的發展至關重要。Binding immunoglobulin protein (BiP,又稱GRP78)為一分子伴侶蛋白 (Chaperone)以及調控Unfolded protein response (UPR)的主要調控因子。在先前許多文獻中指出不論在哺乳類或昆蟲中,BiP於眾多黃病毒的生活史中都扮演了相當重要的角色,但對於其如何在埃及斑蚊中調控登革病毒的複製仍是未知的。本篇研究中,我們將目光著重於登革病毒與埃及斑蚊AaBiP在蚊體內的交互作用。根據研究結果,我們發現將AaBiP沉默後會抑制登革病毒的基因體RNA複製、病毒蛋白質以及感染性顆粒的生成,且以餵血經口感染方式的感染率也有明顯抑制的現象。我們也利用免疫共沉澱及螢光標定的方式發現了病毒的非結構性蛋白質-1 (Non-structural protein-1,NS1) 與AaBiP有交互作用。另外,在沉默AaBiP後會促使病毒NS1蛋白質聚集,此結果說明AaBiP可能影響其蛋白質穩定性。此外,我們利用蛋白酶體抑制劑MG132進行實驗;根據實驗結果發現沉默AaBiP並感染了登革病毒的埃及斑蚊在施加了MG132 後,其體內的病毒NS1蛋白質有顯著回升,且呈現劑量依賴的現象。前述的結果使我們認為沉默AaBiP後所導致的蛋白質降解是由蛋白酶體調控。另一方面,我們發現了沉默AaBiP後會抑制埃及斑蚊的生育以及產卵能力,我們進一步發現沉默AaBiP後會導致蚊卵表面構型改變以致無法受精。另外,沉默AaBiP後會抑制卵黃發生 (vitellogenesis) 致使卵巢發育受阻,我們由實驗結果發現其原因為失去AaBiP後抑制了埃及斑蚊vitellogenin蛋白 (AaVg) 與mRNA的表現量,且AaVg蛋白聚集的現象增強。此外,我們也證實了沉默AaBiP後會導致未摺疊蛋白反應的不正常表現,造成細胞自噬的功能異常。綜合以上實驗結果,我們發現了AaBiP在調控登革病毒複製以及埃及斑蚊繁殖能力的雙重角色,而本篇論文也開闢了嶄新且有效進行病媒控制的策略。 | zh_TW |
dc.description.abstract | The mosquito Aedes aegypti transmits one of the most significant mosquito-borne viruses, dengue virus (DENV), which resulted in marked human morbidity and mortality worldwide. Unfortunately, no specific dengue therapeutics nor effective vaccine is available and prevention is currently limited to vector control. During viral replication in the mosquito and transmission to a new mammalian host, DENV interacts with a variety of vector proteins, which are uniquely important during each stage of the viral cycle. Binding immunoglobulin Protein (BiP, also known as GRP78), a chaperone and master regulator of unfolded protein response (UPR), has been demonstrated to play an essential role in several flavivirus infections. However, the functional role of BiP in regulating dengue virus replication in the mosquito remains largely unknown. In this study, we focus on the interaction between DENV and BiP in the mosquito Aedes aegypti. Our results revealed that silencing of Aedes aegypti BiP (AaBiP) resulted in significant inhibition of DENV viral genome replication, viral protein production, and infectious viral particles biogenesis. In addition, the infection rates after oral infection of dengue virus also showed a significant reduction. Moreover, we also showed that DENV non-structural protein 1 (NS1) interacted with AaBiP by co-immunoprecipitation assay. Additionally, we demonstrated that silencing of AaBiP leads to enhanced DENV NS1 aggregation, indicating that AaBiP mediated viral protein stability. A kinetic study by pulse treatment of MG132, a proteasome inhibitor, in AaBiP-depleted mosquitoes showed that DENV NS1 was drastically elevated. This observation further suggested that AaBiP-mediated viral protein degradation was manipulated by proteasomal machinery. Interestingly, we showed that silencing of AaBiP resulted in inhibition of mosquito fertility and fecundity. We demonstrated that silencing of AaBiP resulted in the collapse of egg micropyle, and further suppressed the fertility of mosquitoes. In addition, depletion of AaBiP inhibited mosquito vitellogenesis due to the reduction of vitellogenin mRNA and elevated aggregation of vitellogenin protein post bloodmeal, further suppressing the development of ovary and mosquito fecundity. Moreover, silencing of AaBiP abnormally turned on the UPR pathway, resulting in the impairment of autolysosome function. Taken together, our results suggested the dual functions of AaBiP in the regulation of dengue virus replication and mosquito reproduction. Information gathered in this study will pave the way toward the establishment of efficient strategies for vector-borne disease control. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:33:40Z (GMT). No. of bitstreams: 1 U0001-1108202215484700.pdf: 4216381 bytes, checksum: 190d49adcb0cdb75f555ba67d810c2f9 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | Acknowledgement i 中文摘要 ii Abstract iv Table of Content vi List of Figures xi List of Tables xiv Chapter 1. Introduction 1 1.1 Mosquito-borne diseases 1 1.2 Vector control strategies 2 1.3 Dengue 4 1.3.1 Dengue fever infection 4 1.3.2 The life cycle of dengue virus 5 1.4 Binding immunoglobulin protein (BiP) 6 1.4.1 The function of BiP 6 1.4.2 The relationship between BiP and viruses 7 1.5 Protein misfolding, proteasomal degradation, and aggregation 8 1.6 Mosquito vitellogenesis 9 1.7 Research aims and hypotheses 11 Chapter 2. Materials and Methods 12 2.1 Material and methods 12 2.1.1 Maintenance of Aedes aegypti 12 2.1.2 Blood feeding of Aedes aegypti 12 2.1.3 Oviposition and hatching assay 13 2.1.4 Viral infection and gene silencing of Aedes aegypti 13 2.1.5 Double-stranded RNA preparation 14 2.1.5.1 Plasmid construction 14 2.1.5.2 Double-stranded RNA synthesis 15 2.1.6 RNA isolation 16 2.1.7 Reverse transcription 17 2.1.8 Diagnostic polymerase chain reaction (Diagnostic PCR) 17 2.1.9 Quantitative polymerase chain reaction 18 2.1.10 Protein extraction and immunoblotting 19 2.1.11 Filter trap assay 20 2.1.12 Co-immunoprecipitation 20 2.1.13 Immunofluorescent assay 21 2.1.14 Focus forming assay 22 2.1.15 Scanning electron microscope 23 2.2 Reagent 24 2.2.1 10% sugar solution 24 2.2.2 Avertin 24 2.2.3 LB broth 24 2.2.4 Ammonium acetate stop solution 24 2.2.5 DEPC-H2O 24 2.2.6 4% paraformaldehyde 24 2.2.7 Sodium phosphate solution 24 2.2.8 Lysis buffer 25 2.2.9 4% glutaraldehyde 25 2.2.10 1% osmium tetroxide (OsO4) 25 Chapter 3. Results 26 3.1 Expression of AaBiP while DENV2 infection 26 3.2 Silencing of AaBiP did not affect the longevity of the mosquitoes 27 3.3 Silencing of AaBiP inhibited DENV2 replication 28 3.4 Localization of AaBiP and DENV2 29 3.5 Interaction between AaBiP and DENV2 30 3.6 AaBiP-associated viral protein reduction was due to proteasomal degradation 31 3.7 Silencing of AaBiP resulted in DENV2 NS1 aggregation 33 3.8 AaBiP was induced after blood meal in mosquito’s life cycle 34 3.9 Silencing of AaBiP inhibited mosquito fertility and fecundity 34 3.10 Knockdown of AaBiP impaired the fertilization of mosquito eggs 35 3.11 Silencing of AaBiP resulted in the reduction of the amount and enhanced the aggregation of vitellogenin protein 36 3.12 Knockdown of AaBiP turned on the unfolded protein response pathway 37 3.13 Silencing of AaBiP did not affect mosquito larvae stage development 38 Chapter 4. Discussion 40 Figures 47 Tables 81 Reference 83 | |
dc.language.iso | en | |
dc.title | 探討埃及斑蚊伴侶蛋白BiP對於登革病毒複製與病媒蚊生殖調控之角色 | zh_TW |
dc.title | Study of the functional roles of the chaperone BiP in dengue virus replication and mosquito reproduction in Aedes aegypti | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.author-orcid | 0000-0002-0236-7573 | |
dc.contributor.oralexamcommittee | 顧家綺(Chia-Chi Ku),劉旻禕(Helene Minyi Liu) | |
dc.contributor.oralexamcommittee-orcid | 顧家綺(0000-0002-5740-1505) | |
dc.subject.keyword | 埃及斑蚊,登革病毒,BiP,伴隨蛋白,卵黃發生, | zh_TW |
dc.subject.keyword | Aedes aegypti,Dengue virus,Binding immunoglobulin protein,chaperone,vitellogenesis, | en |
dc.relation.page | 96 | |
dc.identifier.doi | 10.6342/NTU202202305 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-08-24 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
dc.date.embargo-lift | 2027-08-22 | - |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1108202215484700.pdf 目前未授權公開取用 | 4.12 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。