請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84930完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李尉彰 | zh_TW |
| dc.contributor.advisor | Wei-Chang Li | en |
| dc.contributor.author | 鄭洪森 | zh_TW |
| dc.contributor.author | Hong-Sen Zheng | en |
| dc.date.accessioned | 2023-03-19T22:33:20Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-07-11 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] A. S. Gillis. "What Is The Internet of Things (IoT)?" https://www.techtarget.com/iotagenda/definition/Internet-of-Things-IoT (accessed).
[2] A. S. Algamili et al., "A Review of Actuation and Sensing Mechanisms in Mems-Based Sensor Devices," Nanoscale research letters, vol. 16, no. 1, pp. 1-21, 2021. [3] W.-C. Chen, W. Fang, and S.-S. Li, "A Generalized CMOS-MEMS Platform for Micromechanical Resonators Monolithically Integrated with Circuits," Journal of Micromechanics and Microengineering, vol. 21, no. 6, p. 065012, 2011. [4] J. Zhu et al., "Development Trends and Perspectives of Future Sensors and MEMS/NEMS," Micromachines, vol. 11, no. 1, p. 7, 2019. [5] G. M. Rebeiz, C. D. Patel, S. K. Han, C.-H. Ko, and K. M. Ho, "The Search for A Reliable Mems Switch," IEEE microwave magazine, vol. 14, no. 1, pp. 57-67, 2013. [6] Y. Lin, T. Riekkinen, W.-C. Li, E. Alon, and C. T.-C. Nguyen, "A Metal Micromechanical Resonant Switch for On-Chip Power Applications," in 2011 International Electron Devices Meeting, 2011: IEEE, pp. 20.6. 1-20.6. 4. [7] A. Z. Hajjaj, N. Jaber, S. Ilyas, F. K. Alfosail, and M. I. Younis, "Linear and Nonlinear Dynamics of Micro and Nano-Resonators: Review of Recent Advances," International Journal of Non-Linear Mechanics, vol. 119, p. 103328, 2020/03/01/ 2020, doi: https://doi.org/10.1016/j.ijnonlinmec.2019.103328. [8] I.-J. Cho and E. Yoon, "Design and Fabrication of A Single Membrane Push-Pull Spdt RF MEMS Switch Operated by Electromagnetic Actuation and Electrostatic Hold," Journal of Micromechanics and Microengineering, vol. 20, no. 3, p. 035028, 2010. [9] R. R. Benoit, R. Q. Rudy, J. S. Pulskamp, and R. G. Polcawich, "Piezoelectric RF Mems Switches on Si-on-Sapphire Substrates," Journal of Microelectromechanical Systems, vol. 29, no. 5, pp. 1087-1090, 2020. [10] M. Daneshmand, S. Fouladi, R. R. Mansour, M. Lisi, and T. Stajcer, "Thermally Actuated Latching RF MEMS Switch and Its Characteristics," IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 12, pp. 3229-3238, 2009. [11] Y. Lin, W.-C. Li, Z. Ren, and C. T.-C. Nguyen, "A Resonance Dynamical Approach to Faster, More Reliable Micromechanical Switches," in 2008 IEEE International Frequency Control Symposium, 2008: IEEE, pp. 640-645. [12] R. Liu, J. N. Nilchi, Y. Lin, T. Naing, and C.-C. Nguyen, "Zero Quiescent Power VLF Mechanical Communication Receiver," in 2015 Transducers-2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015: IEEE, pp. 129-132. [13] C.-P. Tsai, Y.-Y. Liao, and W.-C. Li, "A 125-Khz CMOS-MEMS Resoswitch Embedded Zero Quiescent Power OOK/FSK Receiver," in 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS), 2020: IEEE, pp. 106-109. [14] J. N. Nilchi, R. Liu, and C. T.-C. Nguyen, "High Cx/Co 13nm-Capacitive-Gap Transduced Disk Resonator," in 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), 2017: IEEE, pp. 924-927. [15] W.-C. Chen, W. Fang, and S.-S. Li, "High-Q Integrated CMOS-MEMS Resonators with Deep-Submicrometer Gaps and Quasi-Linear Frequency Tuning," Journal of microelectromechanical systems, vol. 21, no. 3, pp. 688-701, 2012. [16] M.-H. Li, C.-Y. Chen, and S.-S. Li, "A Reliable CMOS-MEMS Platform For Titanium Nitride Composite (Tin-C) Resonant Transducers with Enhanced Electrostatic Transduction and Frequency Stability," in 2015 IEEE International Electron Devices Meeting (IEDM), 2015: IEEE, pp. 18.4. 1-18.4. 4. [17] H.-Y. Chen, S.-S. Li, and M.-H. Li, "A Low Impedance CMOS-MEMS Capacitive Resonator Based on Metal-Insulator-Metal (MIM) Capacitor Structure," IEEE Electron Device Letters, vol. 42, no. 7, pp. 1045-1048, 2021. [18] F. D. Bannon, J. R. Clark, and C.-C. Nguyen, "High-Q HF Microelectromechanical Filters," IEEE Journal of solid-state circuits, vol. 35, no. 4, pp. 512-526, 2000. [19] J. Zhao, G. Bridges, and D. Thomson, "Direct Evidence of “Spring Softening” Nonlinearity in Micromachined Mechanical Resonator Using Optical Beam Deflection Technique," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 24, no. 3, pp. 732-736, 2006. [20] S. Dutta and A. Pandey, "Overview of Residual Stress in MEMS Structures: Its Origin, Measurement, and Control," Journal of Materials Science: Materials in Electronics, vol. 32, no. 6, pp. 6705-6741, 2021. [21] W. Fang and J. Wickert, "Determining Mean and Gradient Residual Stresses in Thin Films Using Micromachined Cantilevers," Journal of Micromechanics and Microengineering, vol. 6, no. 3, p. 301, 1996. [22] H. Hussein, P. Le Moal, G. Bourbon, Y. Haddab, and P. Lutz, "Modeling and Stress Analysis af A Pre-Shaped Curved Beam: Influence Of High Modes Of Buckling," International Journal of Applied Mechanics, vol. 7, no. 04, p. 1550055, 2015. [23] R. A. Schapery, "Thermal Expansion Coefficients of Composite Materials Based on Energy Principles," Journal of Composite materials, vol. 2, no. 3, pp. 380-404, 1968. [24] C.-L. Cheng, M.-H. Tsai, and W. Fang, "Determining The Thermal Expansion Coefficient of Thin Films for A Cmos Mems Process Using Test Cantilevers," Journal of Micromechanics and Microengineering, vol. 25, no. 2, p. 025014, 2015. [25] J. Qiu, J. H. Lang, and A. H. Slocum, "A Curved-beam Bistable Mechanism," Journal of microelectromechanical systems, vol. 13, no. 2, pp. 137-146, 2004. [26] H.-S. Zheng, C.-P. Tsai, T.-Y. Chen, and W.-C. Li, "CMOS-MEMS Resonators with Sub-100-nm Transducer Gap Using Stress Engineering," in 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS), 2022: IEEE, pp. 13-16. [27] S.-C. Lu, C.-P. Tsai, and W.-C. Li, "A CMOS-Mems CC-beam Metal Resoswitch for Zero Quiescent Power Receiver Applications," in 2018 IEEE Micro Electro Mechanical Systems (MEMS), 2018: IEEE, pp. 801-804. [28] O. Raccurt, F. Tardif, F. A. d'Avitaya, and T. Vareine, "Influence of Liquid Surface Tension on Stiction of SOI MEMS," Journal of Micromechanics and Microengineering, vol. 14, no. 7, p. 1083, 2004. [29] A. Basu, G. Adams, and N. McGruer, "A Review Of Micro-contact Physics, Materials, and Failure Mechanisms in Direct-Contact RF MEMS Switches," Journal of Micromechanics and Microengineering, vol. 26, no. 10, p. 104004, 2016. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84930 | - |
| dc.description.abstract | 本論文研究在CMOS-MEMS 0.35 μm平台設計出一窄化共振器傳感間隙之結構,並成功將其縮小至奈米尺度。其中,透過彎曲梁結構的設計讓元件在濕蝕刻後,釋放結構中的殘餘應力並產生形變。從彎曲梁的中心點延伸並連接傳感電極,利用彎曲梁的形變帶動電極往共振器方向移動,進而縮小傳感間隙。
透過調整彎曲梁的尺寸參數能夠自由地改變形變量,並利用簡化數學模型以及有限元素法模擬彎曲梁的形變量,再設計初始的傳感間隙大小,可最佳化傳感間隙,突破製程上最小線寬之限制,甚至可使傳感間隙接近無限小或是輕碰共振器的狀態。並且過程中僅需經過一道濕蝕刻步驟便能完成間隙的窄化,不需施加任何的外力以及經過繁複的後製程步驟。 本研究亦將彎曲梁式電極分別運用於雙邊固定共振梁以及梳狀式共振器開關上。前者有效地縮小傳感間隙並以SEM量測到79.5 nm之間隙大小,並在直流電壓3.6 V下量測到394.5 kΩ的動態阻抗,與最小線寬之相同共振器相比,動態阻抗降低近157.4倍。後者同樣以窄化輸出端間隙,降低熱切換所需的最小驅動電壓,提升共振器開關之靈敏度。在直流電壓48.5 V下,僅以交流訊號電壓120 mVpp便能驅動元件成功熱切換。與一般共振器開關驅動訊號電壓的1.3 Vpp相比縮小約10倍。 | zh_TW |
| dc.description.abstract | This thesis presents a transducer gap-narrowing structure for resonators on 0.35-μm 2-poly-4-metal CMOS-MEMS platform. Particularly, an arc beam design releases the residual stress after wet etching and induce the deformation. The transducer electrode connected to the arc beam therefore moves toward the resonator and reduces the transducer gap spacing.
The arc beam structure features high freedom of optimizing the gap spacing through modifying arc beam dimensions and the initial gap spacing. The simplified mathematical model and finite element analysis both assist the prediction of final transducer gap which below the design rule defined gap of 500 nm. Narrowing the gap spacing to infinitesimal or even tapping resonator exactly is possible. Moreover, the gap-narrowing procedure includes only one wet etching process. Additional force or complicated post fabrication process are unnecessary. This thesis practically uses the arc beam design on clamped-clamped beam (CC-beam) resonator and comb-driven resoswitch respectively. For CC-beam resonator, the arc beam electrode effectively reduces the transducer gap to 79.5 nm measured by SEM, and yields the motional impedance of 394.5 kΩ under DC bias of 3.6 V, about 157.4 times lower than 500 nm gap-spacing resonator of 62.1 MΩ. On the other hand, the resultant gap distance enhances the sensitivity of comb-driven resoswith and minimizes the actuate voltage by about 10 times, from 1.3 Vpp to 120 mVpp for hot switching under DC bias of 48.5 V. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:33:20Z (GMT). No. of bitstreams: 1 U0001-2209202214355200.pdf: 6266934 bytes, checksum: bea92de1b462dbefb0d76873545609a1 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract iv 目錄 v 圖目錄 vi 表目錄 x 第一章 前言 1 1-1 研究背景 1 1-2 文獻回顧 4 1-3 研究動機 12 第二章 電容式共振器之運作原理及模型 13 2-1 共振器運作原理 13 2-2 共振器之數學模型 13 第三章 應用殘餘應力於窄化傳感間隙之彎曲梁設計 29 3-1 建構式應用殘餘應力機制 29 3-2 元件設計 32 3-3 元件製程 37 第四章 量測結果與討論 39 4-1 殘餘應力與彎曲梁形變量 39 4-2 雙邊固定共振梁 52 4-3 梳狀式共振器開關 58 4-4 結果與討論 67 第五章 結論與未來展望 69 5-1 元件改良 69 5-2 熱切換開關之壽命評估及元件整合 70 參考文獻 72 附錄A:氮化鈦電極之微機電熱切換開關設計 76 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 傳感間隙 | zh_TW |
| dc.subject | 雙邊固定共振器 | zh_TW |
| dc.subject | 共振式開關 | zh_TW |
| dc.subject | 微機電 | zh_TW |
| dc.subject | 動態阻抗 | zh_TW |
| dc.subject | transducer gap | en |
| dc.subject | motional impedance | en |
| dc.subject | clamped-clamped beam | en |
| dc.subject | CMOS-MEMS | en |
| dc.subject | resoswitch | en |
| dc.title | 建構式應力運用於CMOS-MEMS共振器傳感間隙窄化技術 | zh_TW |
| dc.title | Gap Narrowing for CMOS-MEMS Resonators via Constructive Utilization of Structural Stress | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張培仁;李銘晃;戴慶良 | zh_TW |
| dc.contributor.oralexamcommittee | Pei-Zen Chang;Ming-Huang Li;Ching-Liang Dai | en |
| dc.subject.keyword | 微機電,傳感間隙,動態阻抗,雙邊固定共振器,共振式開關, | zh_TW |
| dc.subject.keyword | CMOS-MEMS,transducer gap,motional impedance,clamped-clamped beam,resoswitch, | en |
| dc.relation.page | 84 | - |
| dc.identifier.doi | 10.6342/NTU202203817 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2022-09-28 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| dc.date.embargo-lift | 2027-09-26 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 未授權公開取用 | 6.12 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
