Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84928
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳靜枝(Ching-Chin Chern)
dc.contributor.authorHan-Sheng Huangen
dc.contributor.author黃瀚陞zh_TW
dc.date.accessioned2023-03-19T22:33:13Z-
dc.date.copyright2022-08-29
dc.date.issued2022
dc.date.submitted2022-08-23
dc.identifier.citationAkhoondi, F. and Lotfi, M. M., “A heuristic algorithm for master production scheduling problem with controllable processsing times and scenario-based demands”, International Journal of Production Research, vol. 54, no. 12, pp. 3659-3676, 2016. Chang, J. C., “A Heuristic Master Planning Algorithm for Multiple Sourcing and Demand Considering Fairness”, M.S. thesis, National Taiwan University, Taiwan, 2020. Chen, C. L., Wang, B. W. and Lee, W. C., “Multiobjective Optimization for a Multienterprise Supply Chain Network”, Industrial & Engineering Chemistry Research, vol. 42, no. 9, pp. 1879-1889, 2003. Chern, C. C. and Hsieh, J. S., “A heuristic algorithm for master planning that satisfies multiple objectives”, Computers & Operations Research, vol. 34, no. 11, pp. 3491-3513, 2007. Chern, C. C., Lei, S. T. and Huang, K. L., “Solving a multi-objective master planning problem with substitution and a recycling process for a capacitated multi-commodity supply chain network”, Journal of Intelligent Manufacturing, vol. 25, no. 1, pp. 1-25, 2012. Correa, J. R., Schulz, A. S. and Stier-Moses, N. E., “Fast, Fair, and Efficient Flows in Networks”, Operations Research, vol. 55, no. 2, pp. 215-225, 2007. Filippi, C. and Stevanato, E., “Approximation schemes for bi-objective combinatorial optimization and their application to the TSP with profits”, Computers & Operations Research, vol. 40, no. 10, pp. 2418-2428, 2013. Ghiami, Y. and Beullens, P., “Planning for shortages? Net Present Value analysis for a deteriorating item with partial backlogging”, International Journal of Production Economics, vol. 178, pp. 1-11, 2016. Grandon, E. E. and Pearson, J. M., “Electronic commerce adoption: an empirical study of small and medium US businesses”, Information & Management, vol. 42, no. 1, pp. 197-216, 2004. Inoie, A., Kameda, H., and Touati, C., “Pareto Set, Fairness, and Nash Equilibrium : A Case Study on Load Balancing”, 2004. Kameda, H., Altman, E., Touati, C and Legrand, A., “Nash equilibrium based fairness”, Mathematical Methods of Operations Research, vol. 76, no. 1, pp. 43-65, 2012. Leng, C. Y., “A Heuristic Master Planning Algorithm for Multi-Channel Demands Considering Fairness and Flexibility”, M.S. thesis, National Taiwan University, Taiwan, 2019. Liao, C. J., Lee, C. H. and Lee, H. C., “An efficient heuristic for a two-stage assembly scheduling problem with batch setup times to minimize makespan”, Computers & Industrial Engineering, vol. 88, pp. 317-325, 2015. Nino, E. D., Ardila, C. J. and Chinchilla, A., “A Novel, Evolutionary, Simulated Annealing inspired Algorithm for the Multi-Objective Optimization of Combinatorial Problems”, Procedia Computer Science, vol. 9, pp. 1992-1998, 2012. Ponsignon, T. and Mönch, L., “Heuristic approaches for master planning in semiconductor manufacturing”, Computers & Operations Research, vol. 39, no. 3, pp. 479-491, 2012. Rusko, R., “Conflicts of supply chains in multi-channel marketing: a case from northern Finland”, Technology Analysis & Strategic Management, vol. 28, no. 4, pp. 477-491, 2015. Salamati-Hormozi, H., Zhang, Z. H., Zarei, O. and Ramezanian, R., “Trade-off between the costs and the fairness for a collaborative production planning problem in make-to-order manufacturing”, Computers & Industrial Engineering, vol. 126, pp. 421-434, 2018. Sawik, T., “Multi-objective master production scheduling in make-to-order manufacturing”, International Journal of Production Research, vol. 45, no. 12, pp. 2629-2653, 2007. Sharma, A. and Mehrotra, A., “Choosing an optimal channel mix in multichannel environments”, Industrial Marketing Management, vol. 36, no. 1, pp. 21-28, 2007. Susarla, N. and Karimi, I. A, “Integrated supply chain planning for multinational pharmaceutical enterprises”, Computers & Chemical Engineering, vol. 42, pp. 168-177, 2012. Tamannaei, M. and Rasti-Barzoki, M., “Mathematical programming and solution approaches for minimizing tardiness and transportation costs in the supply chain scheduling problem”, Computers & Industrial Engineering, vol. 127, pp. 643-656, 2019. Varian, H. R, Equity, envy, and efficiency, 1973. Wang, B., Guan, Z., Ullah, S., Xu, X. and He, Z., “Simultaneous order scheduling and mixed-model sequencing in assemble-to-order production environment: a multi-objective hybrid artificial bee colony algorithm”, Journal of Intelligent Manufacturing, vol. 28, no. 2, pp. 419-436, 2014. Yan, R., “Managing channel coordination in a multi-channel manufacturer–retailer supply chain”, Industrial Marketing Management, vol. 40, no. 4, pp. 636-642, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84928-
dc.description.abstract在全球化的影響之下,彼此息息相關的全球供應鏈也變得更加複雜並且充滿各種不確定性。面對供應鏈不確定性所造成的需求波動,製造商需要發展更能適應環境變動的規劃方式。傳統的規劃方式主要是以最小化成本為主要目標,儘管此種規劃方式能夠為製造商帶來較大的利潤,但也使得製造商在面對需求的波動時處於極高的風險之中。此外,脆弱的供應鏈所造成的需求波動也讓製造商面臨該怎麼在產能不足的情況下妥善分配產能的問題。在過去的生產規劃研究之中,許多研究都假設製造商在規劃時擁有足夠的產能,或是預設製造商會以保守的態度來接受訂單。但在實際規劃與應用時,產能不足使得製造商需要延遲交貨的情形確實是製造商需要面對的重要課題。本研究提出一考量多通路需求公平性與延遲交貨之主規劃排程演算法,解決上述製造商在生產規劃時所遇到的議題。 本研究首先量化公平性和延遲交貨兩個概念,並且將同時考量公平性與延遲交貨的生產規劃問題建立一非線性整數數學規劃模型。由於此模式過於複雜無法找出解答,因此本研究以建立一啟發式演算法的方式予以實作解決,並且以公平性和延遲懲罰成本為指標,與數學模型的求解結果相互驗證。在求解結果表現部分,啟發式演算法與數學模型求解之結果在延遲懲罰成本上平均僅落差0.61%。另外,本研究亦將提出之啟發式演算法應用於一間位於臺灣的精密機械公司,並針對此公司的產品線進行情境設計與實驗。求解規模部分,演算法可將最佳化求解一小時仍找不到任何可行解的案例縮短在1秒之內完成。 綜合以上,本研究所提出之演算法可以迅速並且有效地產出一考量公平性與延遲交貨的主生產規劃排程。對於重視需求公平性以及延遲交貨的製造商來說,此演算法可供其使用;而對於成本導向為主的製造商來說,此演算法的計算與設計亦可做為其調整生產規劃工具的參考。zh_TW
dc.description.abstractDue to globalization, global supply chains become more complicated and uncertain. Traditionally, minimizing the total cost is the main objective of master planning. Though minimizing the total cost can bring more profits to manufacturers, this planning method may risk manufacturers overproduction or underproduction when demands fluctuating. Besides, how to properly allocate their capacities when the capacities are in shortage is another issue to manufacturers. Therefore, to solve the abovementioned problems, this study proposes a master planning algorithm considering fairness and backorder. This study first defines and quantifies the concept of fairness and backorder and then formulates a mixed-integer nonlinear programming (MINLP) model to solve the master planning production problem. Due to the complexity of the MINLP model, a heuristic fairness and backorder master planning algorithm (FBMPA) is proposed to generate a master plan which considers fairness and backorder simultaneously. As for the performance of the algorithm, the average difference in total delay penalty between the results obtained by FBMPA and the MINLP model is 0.61%. In addition, FBMPA is applied to the real cases of a machining manufacturing company located in Taiwan to verify the applicability. Compared to the MINLP model which cannot find any feasible solution within one hour, the experimental outcome shows that FBMPA only spends less than one second solving the problems. In conclusion, this study provides an algorithm to help manufacturers generate a fair master plan under the situation of capacity shortage. To manufacturers which prioritizing demand fairness, the proposed algorithm is an effective and efficient planning tool; as for manufacturers whose main planning objective is cost efficiency, the result of this study still can help them improve their planning methods.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:33:13Z (GMT). No. of bitstreams: 1
U0001-2308202202564500.pdf: 2151306 bytes, checksum: b735d1bb6d052b1f41653c717a2da911 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsChapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Research Objectives 3 1.3 Research Scope and Limitation 4 Chapter 2 Literature Review 6 2.1 Multichannel 6 2.2 Fairness 7 2.3 Methods to Solve Master Planning Problems 9 2.4 Backorder 11 Chapter 3 Problem Description 13 3.1 Problem Description 13 3.2 Assumptions 16 3.3 Parameters 17 3.4 Decision Variables 18 3.5 Constraints 18 3.6 Objective Functions 19 3.7 Summary 21 Chapter 4 Heuristic Fairness and Backorder Master Planning Algorithm (FBMPA) 22 4.1 Preliminary Works 23 4.1.1 Determining Delayed Due Periods 23 4.1.2 Determining Deserved Weights 27 4.2 Capacity Allocation 28 4.2.1 Allocating Capacity 29 4.2.2 Setting Rolling Window 30 4.2.3 Relaxing Delayed Due Period 30 4.2.4 Handling Rounding Problem 33 4.3 Overall Performance Calculation 34 4.4 Complexity of FBMPA 35 4.5 Conclusion 37 Chapter 5 Analysis of Algorithm and Model 38 5.1 Prototype Illustration 38 5.2 A planning example 40 5.3 Scenario Design 42 5.4 Computational Analysis 47 5.4.1 Influences of Factors 47 5.4.2 Comparing FBMPA with the MINLP model 51 5.5 Testing on a real-world case 54 5.5.1 Testing on Automotive Product Line 55 5.5.2 Testing on Industrial Application Product Line 55 5.5.3 Testing on Aviation Product Line 56 5.5.4 Comparison between three different product lines 57 5.6 Conclusion 61 Chapter 6 Conclusion and Future Work 63 6.1 Conclusion 63 6.2 Future Work 64 Reference 66 Appendix 69
dc.language.isoen
dc.subject延遲交貨zh_TW
dc.subject主規劃排程zh_TW
dc.subject排程公平性zh_TW
dc.subject啟發式演算法zh_TW
dc.subject供應鏈管理zh_TW
dc.subjectHeuristic Planning Algorithmen
dc.subjectSupply Chain Managementen
dc.subjectMaster Planning Fairnessen
dc.subjectBackorderen
dc.subjectMaster Production Planningen
dc.title考量多通路需求公平性與延遲交貨之主規劃排程演算法zh_TW
dc.titleA Heuristic Master Planning Algorithm for Multi-Channel Supply Chain Considering Fairness and Backorder with Capacity Constrainten
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭鉢(Bo Hsiao),黃奎隆(Kwei-Long Huang)
dc.subject.keyword供應鏈管理,排程公平性,延遲交貨,主規劃排程,啟發式演算法,zh_TW
dc.subject.keywordSupply Chain Management,Master Planning Fairness,Backorder,Master Production Planning,Heuristic Planning Algorithm,en
dc.relation.page78
dc.identifier.doi10.6342/NTU202202681
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-24
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
dc.date.embargo-lift2022-08-29-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
U0001-2308202202564500.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved