Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84923
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周承復(Cheng-Fu Chou)
dc.contributor.authorYun-Kuan Linen
dc.contributor.author林耘寬zh_TW
dc.date.accessioned2023-03-19T22:32:56Z-
dc.date.copyright2022-08-26
dc.date.issued2022
dc.date.submitted2022-08-24
dc.identifier.citation[1] Jian Yin, Chunjing Gan, Kaiqi Zhao, Xuan Lin, Zhe Quan, and ZhiJie Wang. A novel model for imbalanced data classification. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):6680–6687, 2020. [2] WaiMan Wong. Dementia prediction among diabetes patients based on deep neural network. Master’s thesis, National Taiwan University, Taipei, September 2021. [3] Cross validation. http://ethen8181.github.io/machine-learning/model_selection/model_selection.html. [4] Rebecca L Siegel, Kimberly D Miller, and Ahmedin Jemal. Cancer statistics, 2020. CA Cancer J Clin., 70(1):7–30, 2020. [5] Grace LaiHung Wong, Vicki WingKi Hui, Qingxiong Tan, Jingwen Xu, Hye Won Lee, Terry CheukFung Yip, Baoyao Yang, YeeKit Tse, Chong Yin, Fei Lyu, et al. Novel machine learning models outperform risk scores in predicting hepatocellular carcinoma in patients with chronic viral hepatitis. JHEP Reports, 4(3):100441, 2022. [6] Hwi Young Kim, Pietro Lampertico, Joon Yeul Nam, HyungChul Lee, Seung Up Kim, Dong Hyun Sinn, Yeon Seok Seo, Han Ah Lee, Soo Young Park, YoungSuk Lim, et al. An artificial intelligence model to predict hepatocellular carcinoma risk in korean and caucasian patients with chronic hepatitis b. Journal of Hepatology, 76(2):311–318, 2022. [7] George N Ioannou, Weijing Tang, Lauren A Beste, Monica A Tincopa, Grace L Su, Tony Van, Elliot B Tapper, Amit G Singal, Ji Zhu, and Akbar K Waljee. Assessment of a deep learning model to predict hepatocellular carcinoma in patients with hepatitis c cirrhosis. JAMA network open, 3(9):e2015626 e2015626, 2020. [8] S. Hochreiter and J Schmidhuber. Long shortterm memory. Neural computation, 9.8:1735–1780, 1995. [9] A. Graves, A. R. Mohamed, and G Hinton. Speech recognition with deep recurrent neural networks. IEEE international conference on acoustics, speech and signal processing, 2013. [10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, ..., and I Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017. [11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. CoRR, abs/2010.11929, 2020. [12] Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun. Transformers in time series: A survey, 2022. [13] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: Synthetic minority oversampling technique. Journal of Artificial Intelligence Research, 16:321–357, 2002. [14] Y. Cui, M. Jia, T. Y. Lin, Y. Song, and S Belongie. Classbalanced loss based on effective number of samples. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 9268–9277, 2019. [15] Guillaume Lemaître, Fernando Nogueira, and Christos K. Aridas. Imbalancedlearn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. Journal of Machine Learning Research, 18(17):1–5, 2017. [16] Corinna Cortes and Vladimir Vapnik. Supportvector networks. Machine Learning, 20:273–297, 1995. [17] L Breiman. Random forests. Machine Learning, 45:5–32, 2001. [18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikitlearn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011. [19] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities improve neural network acoustic models. In International Conference on Machine Learning, 2013. [20] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, and Ilya Sutskever. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84923-
dc.description.abstract肝癌不論在台灣或者世界的死亡率長期名列前茅,而 C 型肝炎為造成肝癌的一個主要因素之一,所以在病患罹患 C 型肝癌後,藉由病患治療前後的基本資料,以及定期追蹤病患的身體狀態,來建立預測病患在未來罹患肝癌的模型,了解該病患是否為日後容易得到肝癌的高風險族群對於醫生及病患都是很重要的。 本文利用台大醫院於 2004 到 2022 搜集的病患資料,總共搜集共 1851 位病患資料,這些病患皆曾罹患 C 型肝癌,並且在之後每隔大約半年進行回診直到該病患罹患肝癌或者停止回診,其中 143 位病患最終罹患肝癌。本文比較多種深度神經網路的模型,加上處理不平衡資料集的方法,建立一個有效預測評估病患未來是否罹患肝癌的模型,並對模型結果做出解釋,提供模型當中重要的特徵指標,希望能對於日後評估 C 型肝癌病患罹患肝癌的風險有所幫助。zh_TW
dc.description.abstractThe morality rate of liver cancer has ranked high in Taiwan and worlds. Also, hepatitis C is one of the leading cause of liver cancer. Thus, understanding the risk in patients with hepatitis C is important to take care of those patients who has potential to develop HCC in the future. This paper uses the dataset collected in National Taiwan University Hospital (NTUH) from 2004 to 2022. The dataset contains total 1851 patients with hepatitis C virus before. These patients have been cured and continue to be followed-up. Then, they have taken an examination around every 6 months from before treatment until they stopped returning to the hospital or they have developed HCC. 143 of 1851 patients have developed HCC. We propose a solution for predicting hepatocellular carcinoma in patients with chronic hepatitis C using deep learning technique and imbalanced dataset methods. Also, we provide some important features from the result of the model. We hope that this can help the further research on predicting whether the patients with hepatitis C will develop HCC in the future.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:32:56Z (GMT). No. of bitstreams: 1
U0001-1808202202545800.pdf: 1454231 bytes, checksum: 72bd8d4edae7f0d2118999ea04f930c2 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xi List of Tables xiii Chapter 1 Introduction 1 Chapter 2 Related Work 3 2.1 Prediction of HCC Development . . . . . . . . . . . . . . . . . . . . 3 2.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.1 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . 4 2.2.2 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Imbalanced Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Chapter 3 Dataset 11 Chapter 4 Methodology 15 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.3 Imbalanced Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3.1 Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3.2 SMOTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3.3 Custom Loss Function . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3.4 Ensemble Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.4 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.4.1 Base Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.4.2 MLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.4.3 LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.4.4 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Chapter 5 Experiments and Results 23 5.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.1.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.1.2 Cross Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2.2 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Chapter 6 Conclusion 35 References 37
dc.language.isoen
dc.subject不平衡資料zh_TW
dc.subject神經網路zh_TW
dc.subject肝癌zh_TW
dc.subject二元分類zh_TW
dc.subjectC 型肝炎zh_TW
dc.subjectHepatitis Cen
dc.subjectImbalanced Dataen
dc.subjectBinary Classificationen
dc.subjectDeep Learningen
dc.subjectHepatocellular Carcinomaen
dc.title基於人工智慧模型預測C型肝炎病患之肝癌發生之風險zh_TW
dc.titleA machine learning model to predict hepatocellular carcinoma in patients with chronic hepatitis Cen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳曉光(Hsiao-Kuang Wu),李明穗(Ming-Sui Lee),蘇東弘(Tung-Hung Su),劉振驊(Chen-Hua Liu)
dc.subject.keyword肝癌,C 型肝炎,神經網路,不平衡資料,二元分類,zh_TW
dc.subject.keywordHepatocellular Carcinoma,,Deep Learning,Hepatitis C,Binary Classification,Imbalanced Data,en
dc.relation.page39
dc.identifier.doi10.6342/NTU202202532
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-24
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
dc.date.embargo-lift2022-08-26-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
U0001-1808202202545800.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved