請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84919
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳沛隆(Pei-Long Chen) | |
dc.contributor.author | Guan-Syun Ding | en |
dc.contributor.author | 丁冠薰 | zh_TW |
dc.date.accessioned | 2023-03-19T22:32:43Z | - |
dc.date.copyright | 2022-10-05 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-24 | |
dc.identifier.citation | 1. Beam, T.A., E.F. Loudermilk, and D.F. Kisor, Pharmacogenetics and pathophysiology of CACNA1S mutations in malignant hyperthermia. Physiological Genomics, 2017. 2. Dirksen, S.J.H., et al., Future directions in malignant hyperthermia research and patient care. Anesthesia and analgesia, 2011. 113(5): p. 1108. 3. Litman, R.S., et al., Consensus statement of the malignant hyperthermia association of the United States on unresolved clinical questions concerning the management of patients with malignant hyperthermia. Anesthesia & Analgesia, 2019. 128(4): p. 652-659. 4. Rosenberg, H. and H. Rueffert, Clinical utility gene card for: malignant hyperthermia. European Journal of Human Genetics, 2011. 19(6): p. 732-732. 5. Rüffert, H., et al., Consensus guidelines on perioperative management of malignant hyperthermia suspected or susceptible patients from the European Malignant Hyperthermia Group. British Journal of Anaesthesia, 2021. 126(1): p. 120-130. 6. Johnston, J.J., et al., Updated variant curation expert panel criteria and pathogenicity classifications for 251 variants for RYR1-related malignant hyperthermia susceptibility. bioRxiv, 2022. 7. Yeh, H.-M., et al., Next-generation sequencing and bioinformatics to identify genetic causes of malignant hyperthermia. Journal of the Formosan Medical Association, 2021. 120(2): p. 883-892. 8. Stowell, K., Henry Rosenberg*, Mark Davis, Danielle James, Neil Pollock and. Orphanet Journal of Rare Diseases, 2007. 2: p. 21. 9. Larach, M.G., et al., A clinical grading scale to predict malignant hyperthermia susceptibility. Anesthesiology, 1994. 80(4): p. 771-779. 10. Schartner, V., et al., Dihydropyridine receptor (DHPR, CACNA1S) congenital myopathy. Acta neuropathologica, 2017. 133(4): p. 517-533. 11. Hoppe, K., et al., Relevance of pathogenicity prediction tools in human RYR1 variants of unknown significance. Scientific reports, 2021. 11(1): p. 1-11. 12. Lanner, J.T., et al., Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harbor perspectives in biology, 2010. 2(11): p. a003996. 13. Kushnir, A., M.J. Betzenhauser, and A.R. Marks, Ryanodine receptor studies using genetically engineered mice. FEBS letters, 2010. 584(10): p. 1956-1965. 14. Van Petegem, F., Ryanodine receptors: structure and function. Journal of Biological Chemistry, 2012. 287(38): p. 31624-31632. 15. Hwang, J.H., et al., Mapping domains and mutations on the skeletal muscle ryanodine receptor channel. Trends in molecular medicine, 2012. 18(11): p. 644-657. 16. Bin, X., B. Wang, and Z. Tang, Malignant Hyperthermia: A Killer If Ignored. Journal of PeriAnesthesia Nursing, 2022. 17. Campiglio, M. and B.E. Flucher, STAC3 stably interacts through its C1 domain with CaV1. 1 in skeletal muscle triads. Scientific reports, 2017. 7(1): p. 1-12. 18. Biesecker, L.G., et al., Genomic screening for malignant hyperthermia susceptibility. Anesthesiology, 2020. 133(6): p. 1277-1282. 19. Gonsalves, S.G., et al., Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for the use of potent volatile anesthetic agents and succinylcholine in the context of RYR 1 or CACNA 1S genotypes. Clinical Pharmacology & Therapeutics, 2019. 105(6): p. 1338-1344. 20. Vladutiu, G.D., et al., Genetic risk for malignant hyperthermia in non-anesthesia-induced myopathies. Molecular genetics and metabolism, 2011. 104(1-2): p. 167-173. 21. Sato, K., N. Pollock, and K.M. Stowell, Functional studies of RYR1 mutations in the skeletal muscle ryanodine receptor using human RYR1 complementary DNA. The Journal of the American Society of Anesthesiologists, 2010. 112(6): p. 1350-1354. 22. Urwyler, A., et al., Guidelines for molecular genetic detection of susceptibility to malignant hyperthermia. British Journal of Anaesthesia, 2001. 86(2): p. 283-287. 23. Rosenberg, H., Continued progress in understanding the molecular genetics of malignant hyperthermia. Canadian Journal of Anesthesia/Journal canadien d'anesthésie, 2011. 58(6): p. 489-493. 24. Tong, J., et al., Caffeine and halothane sensitivity of intracellular Ca2+ release is altered by 15 calcium release channel (ryanodine receptor) mutations associated with malignant hyperthermia and/or central core disease. Journal of Biological Chemistry, 1997. 272(42): p. 26332-26339. 25. Lawal, T.A., et al., Preclinical model systems of ryanodine receptor 1-related myopathies and malignant hyperthermia: a comprehensive scoping review of works published 1990–2019. Orphanet journal of rare diseases, 2020. 15(1): p. 1-35. 26. Rosenberg, H., et al., Malignant hyperthermia: a review. Orphanet journal of rare diseases, 2015. 10(1): p. 1-19. 27. Halsted, C.H., The many faces of celiac disease. 1996, Mass Medical Soc. p. 1190-1191. 28. Juengst, E.T., Genetic testing and the moral dynamics of family life. Public Understanding of Science, 1999. 8(3): p. 193. 29. Burke, W., L.E. Pinsky, and N.A. Press, Categorizing genetic tests to identify their ethical, legal, and social implications. American Journal of medical genetics, 2001. 106(3): p. 233-240. 30. Han, D.S., et al., Transcription activation of myostatin by trichostatin A in differentiated C2C12 myocytes via ASK1‐MKK3/4/6‐JNK and p38 mitogen‐activated protein kinase pathways. Journal of cellular biochemistry, 2010. 111(3): p. 564-573. 31. Monnier, N., et al., An autosomal dominant congenital myopathy with cores and rods is associated with a neomutation in the RYR1 gene encoding the skeletal muscle ryanodine receptor. Human molecular genetics, 2000. 9(18): p. 2599-2608. 32. Oyamada, H., et al., Novel mutations in C-terminal channel region of the ryanodine receptor in malignant hyperthermia patients. Japanese journal of pharmacology, 2002. 88(2): p. 159-166. 33. Sato, K., et al., Skeletal muscle ryanodine receptor mutations associated with malignant hyperthermia showed enhanced intensity and sensitivity to triggering drugs when expressed in human embryonic kidney cells. Anesthesiology, 2013. 119(1): p. 111-118. 34. Sadhasivam, S., et al., Bayesian modeling to predict malignant hyperthermia susceptibility and pathogenicity of RYR1, CACNA1S and STAC3 variants. Pharmacogenomics, 2019. 20(14): p. 989-1003. 35. Tsai, F.-C., et al., A polarized Ca2+, diacylglycerol and STIM1 signalling system regulates directed cell migration. Nature cell biology, 2014. 16(2): p. 133-144. 36. Tsai, F.-C. and T. Meyer, Ca2+ pulses control local cycles of lamellipodia retraction and adhesion along the front of migrating cells. Current Biology, 2012. 22(9): p. 837-842. 37. Martı́nez-Salas, E., Internal ribosome entry site biology and its use in expression vectors. Current opinion in biotechnology, 1999. 10(5): p. 458-464. 38. Thompson, S.R., Tricks an IRES uses to enslave ribosomes. Trends in microbiology, 2012. 20(11): p. 558-566. 39. Weber, T. and R. Köster, Genetic tools for multicolor imaging in zebrafish larvae. Methods, 2013. 62(3): p. 279-291. 40. Mosammaparast, N., et al., Nuclear import of histone H2A and H2B is mediated by a network of karyopherins. The Journal of cell biology, 2001. 153(2): p. 251-262. 41. Musinova, Y.R., et al., Nucleolar localization/retention signal is responsible for transient accumulation of histone H2B in the nucleolus through electrostatic interactions. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2011. 1813(1): p. 27-38. 42. Li, X., et al., piggyBac transposase tools for genome engineering. Proceedings of the National Academy of Sciences, 2013. 110(25): p. E2279-E2287. 43. Reboll, M.R., et al., NRF IRES activity is mediated by RNA binding protein JKTBP1 and a 14-nt RNA element. Rna, 2007. 13(8): p. 1328-1340. 44. Brandom, B.W., et al., Ryanodine receptor type 1 gene variants in the malignant hyperthermia-susceptible population of the United States. Anesthesia and analgesia, 2013. 116(5): p. 1078. 45. Foo, C.T.Y., et al., Variant landscape of the RYR1 gene based on whole genome sequencing of the Singaporean population. Scientific reports, 2022. 12(1): p. 1-9. 46. Stephens, J., et al., Functional analysis of RYR1 variants linked to malignant hyperthermia. Temperature, 2016. 3(2): p. 328-339. 47. Merritt, A., et al., Assessing the pathogenicity of RYR1 variants in malignant hyperthermia. BJA: British Journal of Anaesthesia, 2017. 118(4): p. 533-543. 48. Parker, R., et al., Functional characterization of C-terminal ryanodine receptor 1 variants associated with central core disease or malignant hyperthermia. Journal of neuromuscular diseases, 2017. 4(2): p. 147-158. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84919 | - |
dc.description.abstract | 惡性高熱 (Malignant hyperthermia) 是一種與骨骼肌相關的藥理遺傳學疾病,在臨床上具重要意義。會對強效揮發性麻醉氣體,如七氟醚 (sevoflurane) 或琥珀膽鹼 (Succinylcholine) 等,產生高代謝反應。其病程快速猛烈,若沒有及時給予唯一的治療藥物單挫林 (Dantrolene),可能引起橫紋肌溶解或多重器官衰竭而死亡。 會引起惡性高熱的基因主要為RYR1基因,與此基因相關的病例占了惡性高熱總病例的50%-70%。現今因次世代定序 (Next-generation sequencing) 的發展,使我們能建立出快速並精準的惡性高熱相關基因檢測,透過此基因檢測我們找出許多以往還未發現的變異點,尤其此為針對國人的常見變異點,但這些變異點的致病性還無法被準確辨認。 現行國際的惡性高熱指南,對變異點致病性的確認相當嚴謹,目前已發現超過400種變異點,但只有其中的48個被證實其具有致病性。若我們為疑似有惡性高熱的病人進行基因檢測時,只要發現的變異點不在此內,我們就無法確定此變異點與惡性高熱之臨床相關性。因此,我們需要快速發展一個既可靠又具經濟效益的RYR1功能性分析,以確認各個變異點之致病性。 先前主要的功能性研究是使用兔RYR1的cDNA來進行,而非人類的RYR1。後續重要的細胞試驗也以HEK293細胞來進行,而非人類的骨骼肌細胞;以科學的角度來說,我們並不那麼滿意。因此,我們希望能發展一種功能性分析,是以人類的RYR1 cDNA為基礎,並在人類骨骼肌細胞中進行試驗,以此實驗架構來測試我們預計要了解其功能性的變異點。 因此,我們設計一組含有人類RYR1 cDNA的質體,並加入IRES (internal ribosome entry site)、組蛋白 (histone) H2B、紅色螢光蛋白mCherry、和轉位子 (transposon) PiggyBac,以穩定基因表現,同時方便實驗分析。 我們利用綠色螢光蛋白eGFP (以代替RYR1基因) 和HEK293細胞來先測試我們建構的質體表現,經由螢光顯微鏡下可觀察到,其在轉染作用 (transfection) 下還是能夠表達。在流式細胞儀的分析上也可以很明顯地看到HEK293細胞經過目標質體的轉染作用後存活率並未因此下降,在轉染作用的效率上也有33.2%。 同時,我們使用定點突變 (Site-directed mutagenesis PCR) 的方式,對先前研究找出的,望能確認其致病性之五個變異點 (c.487C>T、c.1565A>G、c.2677G>A、c.6488G>T和c.7042_7044del),針對上述變異點之形式,在我們原來的質體上做變更,以利後續執行功能性研究。 最後,我們收入兩則與惡性高熱相關之臨床病例,來演示在臨床中遇到惡性高熱患者時,會產生的遺傳諮詢,與在實務上的運用。 | zh_TW |
dc.description.abstract | Malignant hyperthermia is a pharmacogenetic disease of clinical importance associated with skeletal muscle. It produces a hypermetabolic response to potent volatile anesthetic gases such as sevoflurane or succinylcholine. The course of the disease is rapid and violent, and death may result from rhabdomyolysis or multiple organ failure if Dantrolene, the only therapeutic agent, is not administered in a timely manner. The gene that causes malignant hyperthermia is mainly the RYR1 gene, which accounts for 50%-70% of all cases of malignant hyperthermia. Nowadays, the development of next-generation sequencing has enabled us to establish a rapid and accurate test for related malignant hyperthermia genes, through which we can identify many previously undetected variants, especially those common variants in Taiwanese population, but the pathogenicity of these variants cannot be accurately identified. The current international guidelines for malignant fever are very stringent in confirming the pathogenicity of variants, and over 400 variants have been identified, but only 48 of them have been confirmed to be pathogenic. If we perform genetic testing for patients suspected of having malignant hyperthermia, we will not be able to confirm the clinical relevance of the variant as long as it is not included here, which is a major problem for patients. Therefore, we need to rapidly develop a reliable and cost-effective functional analysis for RYR1 to confirm the pathogenicity of each variant. Previously, the main functional studies were performed using rabbit RYR1 cDNA rather than human RYR1 cDNA, and subsequent important cellular experiments were performed with HEK293 cells rather than human skeletal muscle cells, which is not as scientifically satisfactory as we would like. Therefore, we would like to develop a functional assay based on human RYR1 cDNA and perform experiments in human skeletal muscle cells as an experimental framework to test the variants that we expect to understand their expression. Therefore, we designed a set of plasmids containing human RYR1 cDNA and added IRES (internal ribosome entry site), histone H2B, red fluorescent protein mCherry, and PiggyBac transposon to stabilize gene expression and facilitate experimental analysis. We used eGFP, a green fluorescent protein (instead of RYR1 gene), and HEK293 cells to test the performance of our constructs. It is also clear from the flow cytometry analysis that the survival rate of HEK293 cells did not decrease after transfection with the target plasmid, and the efficiency of transfection was 33.2%. At the same time, we used site-directed mutagenesis PCR on the original plastid to modify five mutation variants (c.487C>T, c.1565A>G, c. 2677G>A, c.6488G>T and c.7042_7044del) were changed to facilitate subsequent functional studies. Finally, we present two clinical cases related to malignant hyperthermia to provide an in-depth understanding of the genetic counseling and practical application in clinical situations where patients with malignant hyperthermia are encountered. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:32:43Z (GMT). No. of bitstreams: 1 U0001-2308202216591500.pdf: 4268359 bytes, checksum: 0e0d798b5bbab2ef839debf8868c8d83 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iii ABSTRACT v 目錄 vii 圖目錄 xi 表目錄 xiv Chapter 1 研究背景與動機 1 1.1 惡性高熱之疾病介紹 1 1.2 惡性高熱之臨床症狀 1 1.3 惡性高熱之病理生理學 3 1.3.1 Ryanodine receptors (RyRs) 3 1.3.2 Ryanodine receptor 1 (RyR1) 4 1.3.3 Dihydropyridine receptor (DHPR,L-type Ca2+ channel,CaV1.1) 4 1.3.4 STAC3 4 1.4 惡性高熱之基因與遺傳模式 4 1.4.1 基因座 5 1.4.2 Ryanodine receptor 1 (RYR1) gene 5 1.5 惡性高熱之臨床診斷及檢查 6 1.5.1 臨床診斷方法 6 1.5.2 基因診斷 7 1.5.3 基因之功能性分析 8 1.6 惡性高熱之治療現況 9 1.7 遺傳諮詢 10 1.8 研究動機 11 1.8.1 發展基因之功能性分析方法 11 1.8.2 次世代定序 (Next-generation sequencing,NGS) 與基因分析 12 1.8.3 有利實驗進行的其它序列 12 Chapter 2 研究方法 14 2.1 建構表現人類RYR1基因的質體 14 2.1.1 表現人類RYR1基因的質體 14 2.1.2 建構含人類RYR1基因的質體 15 2.1.3 與惡性高熱相關之變異點 16 2.2 定點突變 (Site-directed mutagenesis PCR) 16 2.2.1 傳統定點突變方式 (Site-directed mutagenesis PCR) 16 2.2.2 TOOLSite-directed mutagenesis kit 16 2.3 TA cloning 17 2.4 In-Fusion cloning 17 2.5 轉形作用 (transformation) 17 2.6 細胞培養 18 2.7 次世代定序 (Next-generation sequencing,NGS) 18 2.8 免疫組織化學染色法 (Immunohistochemical stains,IHC) 18 2.9 DNA轉染作用 (DNA transfection) 18 2.10 流式細胞技術 (Flow cytometry) 19 2.11 鈣離子成像 (Calcium imaging) 20 Chapter 3 研究結果 21 3.1 表現人類RYR1基因的質體 21 3.1.1 人類RYR1基因的質體 21 3.1.2 將人類RYR1分段接入質體 (pCR®2.1) 中 22 3.2 完成更動之RYR1變異點 23 3.2.1 c.487C>T 23 3.2.2 c.1565A>G 25 3.2.3 c.2677G>A 28 3.2.4 c.6488G>T 30 3.2.5 c.7042_7044del 31 3.3 完整質體之次世代定序分析 32 3.4 DNA轉染作用與轉染效率 33 3.5 遺傳諮詢案例 35 3.5.1 案例一 35 3.5.2 案例二 36 Chapter 4 討論 39 4.1 後續之變異點功能性分析 39 4.2 惡性高熱之細胞模型討論 42 4.3 個案討論 42 Chapter 5 結論 44 5.1 人類RYR1之完整質體 44 5.2 目標變異點之完成 44 5.3 質體之DNA轉染作用的確認 44 5.4 惡性高熱之遺傳諮詢案例 45 REFERENCE 46 | |
dc.language.iso | zh-TW | |
dc.title | 改進RYR1基因變異點之功能性分析以評估對惡性高熱症之致病性 | zh_TW |
dc.title | Toward a better functional analysis of RYR1 variants for assessing their pathogenicity in malignant hyperthermia | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 葉惠敏(Huei-Min Ye),蔡丰喬(Fong-Ciao Cai) | |
dc.subject.keyword | 惡性高熱,人胚胎腎細胞293,次世代定序,致病性變異點,功能性研究,遺傳諮詢, | zh_TW |
dc.subject.keyword | Malignant Hyperthermia (MH),HEK293 cell,Next-generation sequencing,Pathogenic variant,Functional analysis,Genetic counseling, | en |
dc.relation.page | 51 | |
dc.identifier.doi | 10.6342/NTU202202715 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-08-25 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
dc.date.embargo-lift | 2022-10-05 | - |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2308202216591500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.17 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。