Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84914
標題: 整合熱影像與雷達呼吸監測系統於乳牛熱緊迫程度之分析
Integrating Thermal Imaging and Radar Respiration Rate Monitoring System for the Analysis of Dairy Cow Heat Stress Level
作者: 陳玟銨
Wen-An Chen
指導教授: 林達德
Ta-Te Lin
關鍵字: 乳牛,深度學習,影像處理,紅外線攝影機,監測系統,熱影像,呼吸頻率,
dairy cow,deep learning,image processing,infrared thermography,monitoring system,thermal image,respiration rate,
出版年 : 2022
學位: 碩士
摘要: 乳牛的產乳量與其健康狀況密切相關。牠們的體溫將是反映身體狀況重要指標之一。紅外線熱影像技術已經有不少相關研究與應用,證實可以在非接觸式的情況下量測乳牛溫度並進一步研究與分析,因此將成為建立乳牛健康管理的自動化監測系統之關鍵。儘管有幾項研究報導了通過手持式熱影像攝影機測量乳牛溫度的方法,但手動測量耗時費力,在牧場的實際應用上並不實際。為了解決這些問題,本研究提出了一種自動化的非接觸式熱影像監測系統,可以有效地從即時熱影像監測系統擷取乳牛眼睛的溫度測量值。該系統利用深度學習方法進行泌乳牛眼睛偵測與定位。應用於即時乳牛眼睛偵測的YOLOv4模型經過訓練和優化;該模型之偵測率達到 0.99 及F1 score 達到0.99。從熱影像串流中擷取出許多包含乳牛眼睛的影像,再應用進一步的影像處理算法計算平均溫度。透過這種方法,熱影像攝影機對每頭經過前方的乳牛進行多次溫度測量。該系統安裝在台大動科系實驗牧場,並進行了長期實驗量測以紀錄個別乳牛溫度的變化,數據分析結果發現環境溫度、乳牛眼睛與熱影像攝影機間的距離及角度、個體牛隻差異、眼睛型態及牛隻行為都會對溫度測量都有很強的影響,代表眼睛溫度測量需要用環境溫度進行校正,並且需要對測量的溫度進行後處理以提高其準確性。此溫度監測系統也結合非接觸式雷達呼吸頻率系統進一步分析乳牛熱緊迫的程度。從實驗中分析群體牛隻結果可以得知,乳牛眼睛溫度與溫溼度指數之線性回歸斜率0.07,相關係數為0.69,乳牛呼吸頻率與溫溼度指數之相關係數為0.74,眼睛溫度與呼吸頻率之相關係數為0.60。以單一溫濕度指數做熱緊迫區分時,從眼睛溫度分析之溫濕度數值為71.8,以呼吸頻率分析之溫濕度數值為68.1。此結果驗證紅外線熱影像可以被運用於牧場中自動監測乳牛之健康狀態,也代表本研究所建立之系統在檢測乳牛發燒或評估熱緊迫方面具有未來應用之價值。
Dairy cows' milk production is closely related to their health status. One of the indicators reflecting their health status is their body temperature. Infrared thermal imaging has been demonstrated to process a high potential for non-contact measurement of dairy cow body temperature, which is crucial for establishing an automated health monitoring system for dairy cow management. Although several studies have reported on the dairy cow temperature measurement by handheld thermal imaging cameras, manual measurement is not a feasible approach for practical application in the dairy industry as it is laborious and time-consuming. To solve these problems, this work proposes an automated non-contact thermal imaging monitoring system that can efficiently take dairy cow eye temperature measurement from thermal video stream in real time. The system utilizes a deep learning approach for dairy cow eye detection. A YOLOv4 model for real-time dairy cow eye detection was trained and optimized; it yielded a hit rate of 0.99 and an F1-score of 0.99. For each detected sub-image containing the dairy cow eye in the video stream, a further image processing algorithm was applied to determine the mean temperature with its variance. With this approach, multiple temperature measurements are taken from each dairy cow walking by the thermal camera. The system was installed in the university experimental dairy farm and long-term experiments were carried out to assess the variations of temperature measurement. It was found that both the ambient temperature, the thermal camera distance and angle, individual differences, eye stage and cow behavior have strong effect on the temperature measurement, indicating that the eye temperature measurement needs to be corrected with the ambient temperature and measured temperatures need to be preprocessed in order to increase its accuracy. The experimental results also show that the proposed system has potential in regard to detecting dairy cow fever or assessing of heat stress. This system also combines the non-contact respiratory rate system to measure the respiratory rate of dairy cows. From the analysis of the results of the group cows in the experiment, it can be known that the linear regression slope between the eye temperature and the THI of dairy cows is 0.07, and the correlation coefficient is 0.69. The correlation coefficient between the respiratory frequency of dairy cows and THI is 0.74. The correlation coefficient between the eye temperature and the respiration rate is 0.60. When using a single THI for heat stress distinction, the THI value analyzed by eye temperature is 71.8, and the THI value analyzed by respiration rate is 68.1. This result validates that the thermal infrared camera can automatically monitor the health status of dairy cows and also represents that the system established in this study has future application value in detecting fever in dairy cows or assessing heat stress.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84914
DOI: 10.6342/NTU202202665
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2026-08-31
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  未授權公開取用
7.34 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved