Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84902
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張雅君(Ya-Chun Chang)
dc.contributor.authorYi-Chen Changen
dc.contributor.author張怡貞zh_TW
dc.date.accessioned2023-03-19T22:31:46Z-
dc.date.copyright2022-08-26
dc.date.issued2022
dc.date.submitted2022-08-24
dc.identifier.citation毛青樺。2008。蟹爪蘭X病毒與紅龍果X病毒之分子特性與偵測。國立臺灣大學植物病理與微生物學研究所碩士論文。 余建美。2016。臺灣紅龍果產業發展現況。臺中區農業改良場特刊 131: 1-12。 吳悅民。2019。影響仙人掌X病毒與紅龍果X病毒間協力作用之因子探討。國立臺灣大學植物病理與微生物學研究所碩士論文。 呂有其。2007。仙人掌X病毒新分離株之特性分析與感染性選質株之構築。國立臺灣大學植物病理與微生物學研究所碩士論文。 李勇賜。2010。紅龍果X病毒之特性分析、感染性選殖株構築與抗血清製備。國立臺灣大學植物病理與微生物學研究所碩士論文。 郭庭禕。2015。紅龍果potexviruses病毒快速檢測方法與磁性奈米粒子療法之開發及應用。國立臺灣大學植物醫學碩士學位學程碩士論文。 陳盟松、曾宥紘、許晴情、于逸知、吳庭嘉、楊嘉凌、白桂芳。2018。紅龍果綜合栽培管理技術。臺中區農業改良場技術專刊。198: 1-54。 張佑瑋。2017。兩種仙人掌X病毒感染性選殖株之研究與紅龍果原生質體系統之建立。國立臺灣大學植物病理與微生物學研究所碩士論文。 張雅玲。2016。紅龍果品種特性及栽培管理。苗栗區農業專訊。74: 9-10。 張雅君、郭庭禕、毛青樺、呂有其、李勇賜。2015。臺灣紅龍果病毒性病害之研究與現況分析。台灣新浮現之重要作物病害及其防治研討會專刊 107-114。 黃士晃、吳雅芳。2011。紅龍果栽培改善措施 (上)。臺南區農業專訊。77: 5-8。 黃士晃。2011。紅龍果栽培改善措施 (下)。臺南區農業專訊。78: 4-7。 黃靖益。2017。仙人掌X病毒與紅龍果X病毒交互作用之探討。國立臺灣大學植物病理與微生物學研究所碩士論文。 廖吉彥、張清安、顏昌瑞、陳昱初、鄧汀欽。2003。感染紅龍果之仙人掌病毒X之鑑定與分部調查。植物病理學會刊 12:225-234。 劉命如、洪建龍、劉瑞芬。2004。引起紅龍果斑駁病徵之Cactus virus X的鑑定與免疫檢測。植物病理學會刊 13:27-34。 AbouHaidar, M. G., Xu, H., and Hefferon, K. L. 1998. Potexvirus isolation and RNA extraction. In Plant Virology Protocols, Methods in Molecular Biology, eds. Foster G.D., Taylor S.C. America, Humana Press, p. 131-143. Adams, S. E., Jones, R. A. C., and Coutts, R. H. A. 1986. Expression of potato virus X resistance gene Rx in potato leaf protoplasts. J. Gen. Virol. 67:2341-2345. Ajjikuttira, P., Loh, C. S., and Wong, S. M. 2005. Reciprocal function of movement proteins and complementation of long-distance movement of Cymbidium mosaic virus RNA by Odontoglossum ringspot virus coat protein. J. Gen. Virol. 86:1543-1553. Atabekov, J.G., Rodionova, N. P., Karpova, O. V., Kozlovsky, S. V., and Poljakov, V. Y. 2000. The movement protein-triggered in situ conversion of potato virus X virion RNA from a nontranslatable into a translatable form. Virology 271:259-263. Atabekov, J. G., Rodionova, N. P., Karpova, O. V., Kozlovsky, S. V., Novikov, V. K., and Arkhipenko, M. V. 2001. Translational activation of encapsidated potato virus X RNA by coat protein phosphorylation. Virology 286:466-474. Bamunusinghe, D., Hemenway, C. L., Nelson, R. S., Sanderfoot, A. A., Ye, C. M., Silva, M. A. T., Payton, M., and Verchot-Lubic, J. 2009. Analysis of potato virus X replicase and TGBp3 subcellular locations. Virology 393:272–285. Baurès, I., Candresse, T., Leveau, A., Bendahmane, A., and Sturbois, B. 2008. The Rx gene confers resistance to a range of potexviruses in transgenic nicotiana plants. MPMI. 21:1154-1164. Bendahmane, A., Köhm, B. A., Dedi, C., and Baulcombe, D. C. 1995. The coat protein of potato virus X is a strain-specific elicitor of Rx1-mediated virus resistance in potato. Plant J. 8:933-941. Bendahmane, A., Kanyuka, K., and Baulcombe, D. C. 1999. The Rx gene from potato controls separate virus resistance and cell death responses. The Plant Cell. 11:781-791. Bol, J. F. 2008. Role of capsid proteins. In: Foster, G.D., Johansen, I.E., Hong, Y., Nagy, P.D. (eds) Plant Virology Protocols. Methods in Molecular Biology™ vol 451. Humana Press. Candresse, T., Marais, A., Faure, C., Dubrana, M. P., Gombert, J., and Bendahmane, A. 2010. Multiple coat protein mutations abolish recognition of Pepino mosaic potexvirus (PepMV) by the potato Rx resistance gene in transgenic tomatoes. MPMI. 23:376-383. Choi, H., Cho, W. K., and Kim, K. H. 2016. Two homologous host proteins interact with Potato virus X RNAs and CPs and affect viral replication and movement. Sci. Rep. 6:28743. Evallo, E., Taguiam, J. D., and Balendres, M. A. 2021. A brief review of plant diseases caused by Cactus virus X. Crop Prot. 143:1055-1066. Fedorkin, O. N., Merits, A., Lucchesi, J., Solovyev, A. G., Saarma, M., Morozov, S. Y., and Mäkinen, K. 2000. Complementation of the movement-deficient mutations in potato virus X: potyvirus coat protein mediates cell-to-cell trafficking of C-terminal truncation but not deletion mutant of potexvirus coat protein. Virology 270:31-42. Forster, R. L. S., Beck, D. L., Guilford, P. J., Voot, D. M., Van Dolleweerd, C. J., and Andersen, M. T. 1992. The coat protein of white clover mosaic potexvirus has a role in facilitating cell-to-cell transport in plants. Virology 191:480-484. García-Cano, E., Resende, R. O., Fernández-Muñoz, R. and Moriones, E. 2006. Synergistic interaction between Tomato chlorosis virus and Tomato spotted wilt virus results in breakdown of resistance in tomato. Phytopathology 96:1263-1269. González-Jara, P., Tenllado, F., Martínez-García, B., Atencio, F. A., Barajas, D., Vargas, M., Díaz-Ruiz, J., and Díaz-Ruíz, J. R. 2004. Host-dependent differences during synergistic infection by potyviruses with potato virus X. Mol. Plant Pathol. 5:29-35. Howard, A. R., Heppler, M. L., Jua, H. J., Krishnamurthy, K., Payton, M. E., and Verchot-Lubicz J. 2004. Potato virus X TGBp1 induces plasmodesmata gating and moves between cells in several host species whereas CP moves only in N. benthamiana leaves. Virology 328:185-197. Huisman, M. J., Linthorst, H. J., Bol, J. F., and Cornelissen, J. C. 1988. The complete nucleotide sequence of potato virus X and its homologies at the amino acid level with various plus-stranded RNA viruses. J. Gen. Virol. 69:1789-1798. Ivanovic, T., Agosto, M. A., Chandran, K., and Nibert, M. L. 2007. A role for molecular chaperone Hsc70 in reovirus outer capsid disassembly. J. Biol. Chem. 282:12210-12219. Karpova, O. V., Zayakina, O. V., Arkhipenko, M. V., Sheval, E. V., Kiselyova, O. I., Poljakov, V. Y., Yaminsky, I. V., Rodionova, N. P., and Atabekov, J. G. 2006. Potato virus X RNA-mediated assembly of single-tailed ternary ‘coat protein–RNA–movement protein’ complexes. J. Gen. Virol. 87:2731-2740. Kavanagh, T., Goulden, M., Santa Cruz, S., Chapman, S., Barker, I., and Baulcombe, D. 1992. Molecular analysis of a resistance-breaking strain of potato virus X. Virology 189:609-617. Kiselyova, O. I., Yaminsky, I. V., Karpova, O. V., Rodionova, N. P., Kozlovsky, S. V., Arkhipenko, M. V., and Atabekov, J. G. 2003. AFM study of potato virus X disassembly induced by movement protein. J. Mol. Biol. 332:321-325. Kohm, B. A., Goulden, M. G., Gilbert, J. E., Kavanagh, T. A., and Baulcombe, D. C. 1993. A potato virus X resistance gene mediates an induced, nonspecific resistance in protoplasts. Plant Cell 5:913-920. Kwon, S. J., Park, M. R., Kim, K. W., Plante, C. A., Hemenway, C. L., and Kim, K. H. 2005. cis-Acting sequences required for coat protein binding and in vitro assembly of Potato virus X. Virology 334:83-97. Laliberté Gagné, M. E., Lecours, K., Gagné, D., and Leclerc, S. 2008. The F13 residue is critical for interaction among the coat protein subunits of papaya mosaic virus. FEBS J. 275: 1474-1484. Latham, J. R., and Wilson, A. K. 2008. Transcomplementation and synergism in plants: implications for viral transgenes? Mol. Plant Pathol. 9:85-103. Lecours, K., Tremblay, M. H., Gagné, M. E. L., Gagné, S. M., and Lecler, D. 2006. Purification and biochemical characterization of a monomeric form of papaya mosaic potexvirus coat protein. Protein Expr. Purif. 47:273-280. Lee, C. C., Ho, Y. N., Hu, R. H., Yen, Y. T., Wang, Z. C., Lee, Y. C., Hsu, Y. H., and Meng, M. H. 2011. The interaction between Bamboo Mosaic Virus replication protein and coat protein is critical for virus movement in plant hosts. J. Virol. 85:12022-12031. Lin, M. K., Hu, C. C., Lin, N. S., Chang, B. Y., and Hsu, Y. H. 2006. Movement of potexviruses requires species specific interactions among the cognate triple gene block proteins, as revealed by a trans-complementation assay based on the Bamboo mosaic virus satellite RNA-mediated expression system. J. Gen. Virol. 87:1357-1367. Liou, M. R., Chen, Y. R., and Liou, R. F. 2004. Complete nucleotide sequence and genome organization of a Cactus virus X strain from Hylocereus undatus (Cactaceae). Arch. Virol. 149:1037-1043. Lough, T. J., Shash, K., Xoconostle-Cázares, B., Hofstra, K. R., Beck, D. L., Balmori, E., Forster, R. L. S., and Lucas, W. J. 1998. Molecular dissection of the mechanism by which potexvirus triple gene block proteins mediate cell-to-cell transport of infectious RNA. MPMI. 11:801-814. Lough, T. J., Netzler, N. E., Emerson, S. J., Sutherland, P., Carr, F., Beck, D. L., Lucas, W. J., and Forster, R. L. S. 2000. Cell-to-cell movement of potexviruses: evidence for a ribonucleoprotein complex involving the coat protein and first triple gene block protein. MPMI. 13:962-974. Lough, T. J., Emerson, S. J., Lucas, W. J., and Forster, R. L. S. 2001. Trans-complementation of long-distance movement of White clover mosaic virus triple gene block (TGB) mutants: phloem-associated movement of TGBp1. Virology 288:18-28. Lucas, W. J. 2006. Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology 344:169-184. Lukashina, E., Ksenofontov, A., Fedorova, N., Badun, G., Mukhamedzhanova, A., Karpova, O., Rodionova, N., Baratova, L., and Dobrov, E. 2012. Analysis of the role of the coat protein N-terminal segment in Potato virus X virion stability and functional activity. Mol. Plant Pathol. 13:38-45. Mathioudakis, M. M., Rodríguez-Moreno, L., Sempere, R. N., Aranda, M. A., and Livieratos, I. 2014. Multifaceted capsid proteins: multiple interactions suggest multiple roles for Pepino mosaic virus capsid protein. MPMI. 27:1356-1369. Morozov, S. Y., Miroshnichenko, N. A., Solovyev, A. G., Fedorkin, O. N., Zelenina, D. A., Lukasheva, L. I., Karasev, A. V., Dolja, V. V., and Atabekov, J. G. 1991. Expression strategy of the potato virus X triple gene block. J. Gen. Virol. 72:2039-2042. Morozov, S. Y., Miroshnichenko, N. A., Zelenina, D. A., Fedorkin, O. N., Solovijev, A. G., Lukasheva, L. I., and Atabekov, J. C. 1990. Expression of RNA transcripts of potato virus X full-length and subgenomic cDNAs. Biochimie 72:677-684. Morozov, S. Y., and Solovyev, A. G. 2003. Triple gene block: modular design of a multifunctional machine for plant virus movement. J. Gen. Virol. 84:1351-1366. Morozov, S. Y., and Solovyev, A. G. 2012. Did silencing suppression counter-defensive strategy contribute to origin and evolution of the triple gene block coding for plant virus movement proteins? Front. Plant Sci. 3:136. Mukhamedzhanova, A. A., Karpova, O. V., Rodionova, N. P., and Atabekov, I. G. 2009. Nonspecific activation of translation of encapsidated potexviral RNA with involvement of potato virus X movement protein TGB1. Dokl. Biochem. Biophys. 428:239-241. Park, M. R., Park, S. H., Cho, S. Y., and Kim, K. H. 2009. Nicotiana benthamiana protein, NbPCIP1, interacting with Potato virus X coat protein plays a role as susceptible factor for viral infection. Virology 386:257-269. Park, M. R., and Kim, K. H. 2013. Molecular characterization of the interaction between the N-terminal region of Potato virus X (PVX) coat protein (CP) and Nicotiana benthamiana PVX CP-interacting protein, NbPCIP1. Virus Genes 46:517-523. Park, M. R., Jeong, R. D., and Kim, K. H. 2014. Understanding the intracellular trafficking and intercellular transport of potexviruses in their host plants. Front. Plant Sci. 5:60 Qiu, X. B., Shao, Y. M., Miao, S., and Wang, L. 2006. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol. Life Sci. 63:2560-2570. Rentería-Canett, I., Xoconostle-Cázares, B., Ruiz-Medrano, R. and Rivera-Bustamante, R. F. 2011. Geminivirus mixed infection on pepper plants: synergistic interaction between PHYVV and PepGMV. Virol. J. 8:104. Rodionova, N. P., Karpova, O. V., Kozlovsky, S. V., Zayakina, O. V., Arkhipenko, M. V., and Atabekov, J. G. 2003. Linear remodeling of helical virus by movement protein binding. J. Mol. Biol. 333:565-572. Syller, J. 2012. Facilitative and antagonistic interactions between plant viruses in mixed infections. MPMI. 13:204-216. Tamai, A., and Meshi, T. 2001. Cell-to-cell movement of Potato virus X: the role of p12 and p8 encoded by the second and third open reading frames of the triple gene block. MPMI. 14:1158–1167. Tilsner, J., Amari, K., and Torrance, L. 2011. Plasmodesmata viewed as specialised membrane adhesion sites. Protoplasma 248:39–60. Tilsner, J., Linnik, O., Louveaux, M., Roberts, I. M., Chapman, S. N., and Oparka, K. J. 2013. Replication and trafficking of a plant virus are coupled at the entrances of plasmodesmata. J. Cell Biol. 201:981-995. Tomita, Y., Mizuno, T., Diez, J., Naito, S., Ahlquist, P., and Ishikawa, M. 2003. Mutation of host DnaJ homolog inhibits Brome mosaic virus negative-strand RNA synthesis. J. Virol. 77:2990-2997. Tremblay, M. H., Majeau, N., Gagné, M. L., Lecours, K., Morin, H., Duvignaud, J., Bolduc, M., Chouinard, N., Paré, C., Gagné, S., and Leclerc, D. 2005. Effect of mutations K97A and E128A on RNA binding and self assembly of papaya mosaic potexvirus coat protein. The FEBS Journal 273:14-25. Untiveros, M., Fuentes, S. and Salazar, L. F. 2007. Synergistic interaction of Sweet potato chlorotic stunt virus (Crinivirus) with carla-, cucumo-, ipomo-, and potyviruses infecting sweet potato. Plant Dis. 91:669-676. Verchot-Lubicz, J. 2021. Potato virus X: A global potato-infecting virus and type member of the Potexvirus genus. Mol. Plant Pathol. 00:1-6. Verchot-Lubicz, J., Ye, C. M., and Bamunusinghe, D. 2007. Molecular biology of potexviruses: recent advances. J. Gen. Virol. 88:1643-1655. Verchot-Lubicz, J., Torrance, L., Solovyev, A. G., Morozov, S. Y., Jackson, A. O., and Gilmer, D. 2010. Varied movement strategies employed by triple gene block-encoding viruses. MPMI. 10:1231-1247. Whitham, S. A., and Wang, Y. 2004. Roles for host factors in plant viral pathogenicity. Curr. Opin. Plant Biol. 7:365-371. Wintermantel, W. M., Cortez, A. A., Anchieta, A. G., Gulati-Sakhuja, A., and Hladky, L. L. 2008. Co-infection by two criniviruses alters accumulation of each virus in a host-specific manner and influences efficiency of virus transmission. Phytopathology 12:1340-1345. Wu, C. H., Lee, S. C., and Wang, C. W. 2011. Viral protein targeting to the cortical endoplasmic reticulum is required for cell–cell spreading in plants. J. Cell Biol. 193:521-535. Xu, H., Leclerc, D., Leung, B., and AbouHaidar, M. G. 1994. The entire nucleotide sequence and genomic organization of potato aucuba mosaic virus. Arch. Virol. 135:461-469. Zayakina, O., Arkhipenko, M., Kozlovsky, S., Nikitin, N., Smirnov, A., Susi, P., Rodionova, N., Karpova, O., and Atabekov, J. 2008. Mutagenic analysis of potato virus X movement protein (TGBp1) and the coat protein (CP): in vitro TGBp1-CP binding and viral RNA translation activation. Mol. Plant Pathol. 9:37-44.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84902-
dc.description.abstract紅龍果為台灣重要經濟果樹之一,實驗室前人研究發現台灣的紅龍果病毒為 Potexvirus 屬之仙人掌 X 病毒 (Cactus virus X, CVX)、紅龍果 X 病毒 (Pitaya virus X, PiVX) 與蟹爪蘭 X 病毒 (Zygocactus virus X, ZyVX);田間調查發現台灣紅龍果受到 CVX 及 PiVX 複合感染的情況十分常見,且在紅龍果原生質體中可觀察到 CVX 與 PiVX 有協力作用的現象,因而推測兩病毒可能存在交互作用。本研究目的為探討 CVX 及 PiVX 之鞘蛋白 (coat protein, CP) 與 TGB1 (triple gene block 1) 蛋白於病毒感染過程中的角色,主要聚焦於 CP 對病毒累積之影響,以及複合感染對於 TGB1 缺失株其移動能力之影響。前人研究顯示 CP 缺失突變會使 CVX 和 PiVX 於圓葉菸草原生質體內之累積量大幅下降;本研究以野生型和 CP 缺失型之病毒轉錄體共同接種圓葉菸草原生質體,結果發現 CP 缺失株之 RNA 累積量無法藉由對方野生型病毒而提升。而為後續研究建構 35S 啟動子驅動之 CP 缺失病毒株,並以農桿菌短暫表現系統接種至圓葉菸草葉片,透過西方墨點法與北方雜合法進行分析;結果顯示缺失 CP 之 CVX 和 PiVX 無法表現病毒 CP,且其病毒 RNA 累積量顯著低於野生型病毒。當 CP 缺失病毒株與 CP 蛋白同時大量表現於圓葉菸草葉片,北方雜合分析結果顯示此種額外補充 CP 之方式,無法於圓葉菸草中回復 CP 缺失株所減少的RNA 累積量。且當野生型或 CP 缺失型病毒株同時與 CP ORF 轉錄體接種於圓葉菸草原生質體,結果顯示額外添加 CP ORF 轉錄體對病毒 RNA 累積量亦無顯著影響。然而於紅龍果原生質體系統,則是發現當 CP 缺失株與對方野生型共同接種,或額外添加 CP ORF 轉錄體時,野生型和CP 缺失株的 RNA 累積量皆能被略為提升。前人研究顯示缺失 TGB1 會使 CVX 和 PiVX 喪失移動能力,為探討透過複合感染以額外補充 TGB1,能否回復 TGB1 缺失病毒株受損之移動能力,因此於白藜葉片先接種野生型病毒,三日後再接種缺失 TGB1 且帶有 eGFP 的病毒轉錄體;螢光觀察的結果顯示 TGB1 缺失株於接種後第三天,其感染點可擴散至相鄰細胞,第六天則可觀察到感染點擴散至周圍 2 到 3 個細胞,顯示 TGB1 缺失所造成的移動能力損害可藉由自身或對方病毒的複合感染而部分回復。綜合以上結果,在紅龍果原生質體中,CVX 和 PiVX 能利用野生型病毒株或 CP ORF 轉錄體,可略為提升 CP 缺失株之基因體 RNA 累積量,顯示額外補充 CP 可以部分回復其功能,且此現象應具有寄主專一性。另外,透過預先接種野生型病毒株的實驗,驗證了 TGB1 協助病毒於白藜葉片細胞間移動的能力,能以額外補充 TGB1 的方式加以回復。zh_TW
dc.description.abstractPitaya is one of the important fruit crops in Taiwan. There are three species of potexviruses, Cactus virus X (CVX), Pitaya virus X (PiVX) and Zygocactus virus X (ZyVX), infecting pitayas in Taiwan. Referring to the field surveys, CVX and PiVX often co-infected pitaya plants, and these two viruses displayed the synergistic effect in pitaya protoplasts. Accordingly, it seems that there is interaction between CVX and PiVX. The aim of this study is to investigate the roles of coat protein (CP) and triple gene block 1 (TGB1) protein of CVX and PiVX during viral infection; mainly focusing on the effect of CP on viral accumulation, and the influence of mixed infection on the movement ability of TGB1 deletion mutant. Our lab showed that RNA accumulation of CVX and PiVX greatly decreased in Nicotiana benthamiana protoplasts due to CP deletion mutation. In this study, wild type (WT) and CP deletion mutant viral transcripts were co-inoculated to N. benthamiana protoplasts, and the results revealed that viral RNA accumulation of CP deletion mutant could not be increased by the other WT virus. For further study, 35S promoter-driven binary vectors of CVX and PiVX CP deletion mutants were constructed for agroinfiltration in N. benthamiana. According to the results of Western blot and Northern blot, both viral CP deletion mutants could not express coat proteins, and their viral RNA accumulations were significantly lower than those of WT. Northern analysis indicated that co-expression of CP deletion mutants and CP proteins in N. benthamiana leaves could not recover the decreased RNA accumulation of CP deletion mutants. When WT or CP deletion mutant co-inoculated with CP ORF transcripts to N. benthamiana protoplasts, viral RNA accumulations were not significantly affected. Never the less, the experiments of WT viruses and CP deletion mutants of CVX and PiVX in pitaya protoplasts showed that co-inoculation of WT and mutant transcripts or additon of CP ORF transcripts could slightly increase the viral RNA accumulations of WT as well as CP deletion mutants. Previous data of our lab indicated that deletion of TGB1 resulted in the loss of movement ability of CVX and PiVX. To investigate the feasibility of trans-complement of TGB1, leaves of Chenopodium quinoa were first inoculated with CVX or PiVX WT and then inoculated with TGB1-eGFP deletion mutant transcripts after three days. Based on fluorescence observation, the infection foci of TGB1 deletion mutant could expand to neighboring cells at 3-6 days post inoculation, which means the TGB1 deletion mutants could be rescued by trans-complementation of WT viruses. In summary, WT virus and CP ORF transcripts could partially rescue the viral RNA accumulation of CP deletion mutants in pitaya protoplasts. Besides, the trans-complementation of CVX and PiVX CP is host specific. Additionally, the defective movement ability of TGB1 deletion mutants could be recovered by the trans-complementation of TGB1 supplied by the CVX or PiVX-infected C. quinoa leaves.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:31:46Z (GMT). No. of bitstreams: 1
U0001-2308202216190800.pdf: 2842555 bytes, checksum: 06274d485286e45d0a289dcc73a1a67b (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents目錄 口試委員會審定書 致謝 摘要 i Abstract iii 壹、前言 1 一、紅龍果之介紹 1 二、仙人掌 X 病毒與紅龍果 X 病毒之介紹 2 (一) Potexvirus 屬病毒之基本特性 2 (二) 仙人掌 X 病毒 (Cactus virus X) 3 (三) 紅龍果 X 病毒 (Pitaya virus X) 4 三、Potexvirus 屬病毒鞘蛋白 (coat protein, CP) 之功能介紹 5 (一) 參與病毒包被 (encapsidation) 6 (二) 協助病毒複製 6 (三) 協助病毒移動 8 四、Potexvirus 屬病毒 triple gene block 1 (TGB1) 蛋白之移動功能介紹 8 五、研究動機 10 貳、材料與方法 11 一、實驗使用之植物材料與種植方式 11 (一) 圓葉菸草 (Nicotiana benthamiana) 11 (二) 白藜 (Chenopodium quinoa) 11 (三) 白肉種紅龍果 (Hylocereus undatus) 11 二、質體之構築 12 三、農桿菌短暫表現法 13 (一) 農桿菌之轉型 13 (二) 農桿菌注射 13 四、西方墨點法 14 (一) 植物蛋白之萃取 14 (二) 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 (SDS-PAGE) 14 (三) 蛋白質轉印 14 (四) 抗體反應與偵測 15 五、生體外轉錄體之製備 16 (一) 直線化DNA模板 16 (二) 生體外轉錄反應 16 六、白藜植株之機械接種 16 (一) 以 CVX 或 PiVX 感染之植物汁液預先接種 16 (二) 轉錄體之接種 17 七、白藜葉片之螢光顯微鏡觀察 17 八、原生質體之製備與接種 17 (一) 圓葉菸草原生質體之製備 17 (二) 白肉種紅龍果原生質體之製備 18 (三) 原生質體之接種 20 九、原生質體與圓葉菸草植株之全 RNA 純化 20 十、北方雜合法 21 (一) DNA探針之製備 21 (二) 洋菜膠體電泳與核酸轉印 21 (三) 雜合反應與訊號偵測 22 參、結果 23 一、共同接種野生型和突變型之 CVX 和 PiVX 病毒轉錄體於圓葉菸草原生質體對病毒 RNA 累積量之影響 23 二、共同接種 CVX 或 PiVX 病毒轉錄體和 CP ORF 轉錄體於圓葉菸草原生質體對病毒 RNA 累積量之影響 24 三、建構 35S 啟動子驅動之 CVX 和 PiVX CP 缺失株及確認農桿菌注射法之條件 25 四、共同接種病毒選殖株和 CP 蛋白表現載體於圓葉菸草葉片對病毒 RNA 累積量之影響 27 五、共同接種野生型和突變型之 CVX 和 PiVX 病毒轉錄體於紅龍果原生質體對病毒 RNA 累積量之影響 27 六、共同接種 CVX 和 PiVX 病毒轉錄體和 CP ORF 轉錄體於紅龍果原生質體對病毒 RNA 累積量之影響 28 七、額外添加 CVX 與 PiVX 之 TGB1 對於 CVX 或 PiVX TGB1 缺失病毒株其細胞間移動之影響 29 肆、討論 31 一、CP 缺失型突變對於 CVX 與 PiVX 病毒感染能力之影響 31 (一) 野生型與 CP 缺失型病毒株共同接種對 RNA 累積量之影響 31 (二) CP ORF 轉錄體或蛋白表現載體與 CP 缺失型病毒株共同接種對 RNA 累積量之影響 33 (三) CP 缺失株受到 trans-complement 可能機制之探討 34 二、TGB1 缺失型突變對於 CVX 與 PiVX 病毒感染能力之影響 37 (一) TGB1 缺失型突變對病毒累積量無顯著影響 37 (二) TGB1 缺失型突變對病毒移動能力之影響與 TGB1 trans-complement 的潛力 37 (三) TGB1 缺失株受到 trans-complement 可能機制之探討 38 三、結語 40 伍、參考文獻 41 陸、附表 50 柒、附圖 53
dc.language.isozh-TW
dc.subject紅龍果X病毒zh_TW
dc.subject鞘蛋白zh_TW
dc.subject仙人掌X病毒zh_TW
dc.subject複合感染zh_TW
dc.subject反式互補zh_TW
dc.subjectTGB1zh_TW
dc.subjecttrans-complementen
dc.subjectCactus virus Xen
dc.subjectPitaya virus Xen
dc.subjectcoat proteinen
dc.subjecttriple gene block 1en
dc.subjectco-infectionen
dc.title探討鞘蛋白與 TGB1 於紅龍果 X 病毒與仙人掌 X 病毒感染過程所扮演之角色zh_TW
dc.titleInvestigation of the roles of coat protein and TGB1 in the infection of Cactus virus X and Pitaya virus Xen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林詩舜(Shih-Shun Lin),張立(Li Chang)
dc.subject.keyword仙人掌X病毒,紅龍果X病毒,鞘蛋白,TGB1,複合感染,反式互補,zh_TW
dc.subject.keywordCactus virus X,Pitaya virus X,coat protein,triple gene block 1,co-infection,trans-complement,en
dc.relation.page79
dc.identifier.doi10.6342/NTU202202710
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-25
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
dc.date.embargo-lift2022-08-26-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
U0001-2308202216190800.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved