請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84893
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 孔令傑(Ling-Chieh Kung) | |
dc.contributor.author | Xin-Yu Liu | en |
dc.contributor.author | 劉心鈺 | zh_TW |
dc.date.accessioned | 2023-03-19T22:31:16Z | - |
dc.date.copyright | 2022-09-02 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-25 | |
dc.identifier.citation | Bibliography Akçay, Yalçın, Harihara Prasad Natarajan, Susan H Xu. 2010. Joint dynamic pricing of multiple perishable products under consumer choice. Management Science 56(8) 1345–1361. Arslan, H.A., R.F. Easley, Ruxian Wang, Övünç Yılmaz. 2022. Data-driven sports ticket pricing for multiple sales channels with heterogeneous customers. Manufacturing & Service Operations Management 24(2) 1241–1260. Caro, Felipe, Jérémie Gallien. 2012. Clearance pricing optimization for a fast-fashion retailer. Operations research 60(6) 1404–1422. Dong, Lingxiu, Panos Kouvelis, Zhongjun Tian. 2009. Dynamic pricing and inventory control of substitute products. Manufacturing & Service Operations Management 11(2) 317–339. Elmaghraby, Wedad, Pınar Keskinocak. 2003. Dynamic pricing in the presence of inventory considerations: Research overview, current practices, and future directions. Management science 49(10) 1287–1309. Ferreira, Kris Johnson, Bin Hong Alex Lee, David Simchi-Levi. 2016. Analytics for an online retailer: Demand forecasting and price optimization. Manufacturing & Service Operations Management 18(1) 69–88. Gabriel, B., R. Caldentey. 2003. An overview of pricing models for revenue management. Manufacturing & Service Operations Management 5(3) 203–229. Gallego, Guillermo, Garrett Van Ryzin. 1994. Optimal dynamic pricing of inventories with stochastic demand over finite horizons. Management science 40(8) 999–1020. Li, Hongmin, Woonghee Tim Huh. 2011. Pricing multiple products with the multinomial logit and nested logit models: Concavity and implications. Manufacturing & Service Operations Management 13(4) 549–563. Maglaras, Constantinos, Joern Meissner. 2006. Dynamic pricing strategies for multiproduct revenue management problems. Manufacturing & Service Operations Management 8(2) 136–148. Smith, Stephen A, Dale D Achabal. 1998. Clearance pricing and inventory policies for retail chains. Management Science 44(3) 285–300. Song, Jing-Sheng Jeannette, Zhengliang Xue Song, Xiaobei Shen. 2021. Demand management and inventory control for substitutable products. Available at SSRN 3866775. Xu, Joseph, Peter Fader, Senthil Veeraraghavan. 2019. Designing and evaluating dynamic pricing policies for major league baseball tickets. Manufacturing & Service Operations Management 21(1) 121–138. Zhao, Wen, Yu-Sheng Zheng. 2000. Optimal dynamic pricing for perishable assets with nonhomogeneous demand. Management science 46(3) 375–388. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84893 | - |
dc.description.abstract | 因為顧客對於價格敏感,所以動態定價可以在有限的庫存與產能下,透過定價控制需求進而增加收入。然而瞭解價格如何影響需求並不是一個容易的問題,而多產品之間的替代效應使得估計需求變得更困難。雖然目前有很多研究提出各種估計模型來探討多產品間價格與需求的關係,但卻很少研究示範如何實際應用這些模型,並探討這些模型在真實問題中的預測成效。因此我們的研究提出了一個詳細的過程,來示範如何將理論的需求估計模型應用於真實的多產品定價問題,並且我們分別訓練訓練了考慮與未考慮替代效應的需求模型,以比較考慮替代效應對於需求估計的影響。對於前者,我們使用線性回歸(linear regression)和指數回歸(exponential regression),分別對每個產品做需求估計。對於後者,我們使用多項式邏輯模型(multinomial logit model)來估計產品間的選擇機率。除此之外,為了提高需求模型的估計成效,我們使用不同的產品特徵以及不同的預測器來訓練模型。我們使用一個線上鞋子零售商的銷售數據來示範需求估計的方法與流程。在此需求估計的問題中,我們發現多項式邏輯模型比線性回歸和指數回歸的結果更好,並且使用隨機森林做為預測器訓練多項式邏輯模型,比最小平方法訓練的多項式邏輯模型提高了 15% 的成果。 | zh_TW |
dc.description.abstract | Because demand is price sensitive, dynamic pricing could increase revenues under limited inventory or capacity. However, how prices would affect demand quantity is a tough problem. Moreover, the substitution effect among products makes demand estimation even more complicated. Although many models have been proposed to discuss the relationship between prices and demand for multiple products, few studies have explored how to apply those models in practice and the effectiveness of those models. To bridge the gap between theory and practice, we propose a detailed process to demonstrate how to apply the demand estimation models for the multi-product pricing problem. To show the effectiveness of taking substitution effect into consideration in the models, we compare the performance of demand models with and without the substitution effect. For the models without substitution effect, we adopt linear regression and exponential regression and get the multi-product pricing policy by combining the best pricing policy for every single product. For the models with the substitution effect, we use the multinomial logit model (MNL) to estimate the choice probabilities among products. To improve our demand models' performance, we use more product features and alternative predictors to train models. An online retailing dataset is used to show our process of demand estimation. In this case, the MNL model has better performance than the regression models. Moreover, compared with the basic MNL model, which is trained with least squares regression, the MNL model with random forest improves the performance by 15%. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:31:16Z (GMT). No. of bitstreams: 1 U0001-2508202200480300.pdf: 2099083 bytes, checksum: 3e619f762502b1bd6e9d1305889c0327 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | Contents 1 Introduction 1 1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Research plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Literature Review 5 2.1 Studies focusing on the analytical models . . . . . . . . . . . . . . . . . . 6 2.1.1 Single-product models . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Multinomial logit model for multi-product . . . . . . . . . . . . . 7 2.2 Studies focusing on the estimation processes . . . . . . . . . . . . . . . . 8 2.2.1 Use regression-based models to estimate demand . . . . . . . . . 8 2.2.2 Use discrete choice models to estimate demand . . . . . . . . . . 9 3 Problem Description and Formulation 11 3.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4 Solution Process 16 4.1 The demand model without considering any substitution . . . . . . . . . 16 4.1.1 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1.3 Model Training and Prediction . . . . . . . . . . . . . . . . . . . 20 4.2 The demand model with substitution . . . . . . . . . . . . . . . . . . . . 23 4.2.1 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2.3 Model Training and Prediction . . . . . . . . . . . . . . . . . . . 26 5 Performance Evaluation 31 5.1 Implementing the process with real world data . . . . . . . . . . . . . . . 31 5.2 Experiment result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.2.1 The result of tuning shift values . . . . . . . . . . . . . . . . . . . 35 5.2.2 The comparison of model fitting . . . . . . . . . . . . . . . . . . . 37 5.2.3 The performance of top-sale datasets . . . . . . . . . . . . . . . . 38 5.2.4 The impact of price range . . . . . . . . . . . . . . . . . . . . . . 39 5.2.5 The relationship between sale rank and price range . . . . . . . . 41 5.3 Practical Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6 Extensions 44 6.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.1.1 Alternative predictor . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.1.2 Using other features to train models . . . . . . . . . . . . . . . . 46 6.2 Experiment result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.2.1 Overall improvement of basic models . . . . . . . . . . . . . . . . 48 6.2.2 The result of tuning shift values . . . . . . . . . . . . . . . . . . . 49 6.2.3 The performance of top-sale datasets . . . . . . . . . . . . . . . . 52 6.2.4 The impact of price range . . . . . . . . . . . . . . . . . . . . . . 52 6.2.5 The relationship between sale rank and price range . . . . . . . . 53 7 Conclusions and Future Directions 57 7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 References 60 A The impact of price range 63 B The relationship between sale rank and price range 66 List of Figures 5.1 Analysis process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2 Relationship among price sensitivity, sales quantity, and price standard deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.3 Tuning shift value for NSE and MNL models . . . . . . . . . . . . . . . . 36 5.4 The prices and sale quantity of the product . . . . . . . . . . . . . . . . 37 5.5 The estimation result of three models . . . . . . . . . . . . . . . . . . . . 38 5.6 The result for basic model in top-sale dataset . . . . . . . . . . . . . . . 40 5.7 The relationship between in-range percentage and testing NMAE . . . . 40 5.8 The relationship between sale rank, in-range and testing NMAE . . . . . 41 6.1 Box plot for comparing MNL-SEP-rf model and MNL-SEP-lr model . . . 49 6.2 Comparing MNL-SEP-rf model and MNL-SEP-lr model in top-sale dataset 50 6.3 The result of top-sale dataset . . . . . . . . . . . . . . . . . . . . . . . . 54 6.4 The relationship between in-range percentage and testing NMAE of the MNL-type models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.5 The relationship between sale rank, in-range, and testing NMAE of the MNL-type models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 A.1 The relationship between in-range percentage and testing NMAE of the NSL-type models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 A.2 The relationship between in-range percentage and testing NMAE of the NSE-type models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 B.1 The relationship between sale rank, in-range, and testing NMAE of the NSL-type models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 B.2 The relationship between sale rank, in-range, and testing NMAE of the NSE-type models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 List of Tables 3.1 Example of sales data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Example of view data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1 The data that exists missing price data . . . . . . . . . . . . . . . . . . . 19 4.2 Back fill missing price data . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3 Example of calculating weekly data . . . . . . . . . . . . . . . . . . . . . 21 4.4 The result of adding one to quantity . . . . . . . . . . . . . . . . . . . . 22 4.5 The data of choice probability . . . . . . . . . . . . . . . . . . . . . . . . 26 4.6 The result of adding 1 to the quantity and recalculating the choice probability 28 4.7 The result of alr-transformation . . . . . . . . . . . . . . . . . . . . . . . 29 5.1 The result of tuning shift value . . . . . . . . . . . . . . . . . . . . . . . 36 5.2 The number of remaining items included in the top-sale dataset . . . . . 39 6.1 The testing NMAE of tuning ϵ for each model . . . . . . . . . . . . . . . 51 6.2 The result of tuning ϵk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.3 The best result for each top-sale dataset . . . . . . . . . . . . . . . . . . 53 | |
dc.language.iso | en | |
dc.title | 多產品動態定價需求參數估計之實務流程 | zh_TW |
dc.title | A Practical Process for Estimating the Coefficients of Demand Models for Multi-product Dynamic Pricing | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃奎隆(Kwei-Long Huang),藍俊宏(Jakey Blue) | |
dc.subject.keyword | 多產品定價問題,需求估計,替代效應,多項式邏輯模型, | zh_TW |
dc.subject.keyword | Multi-product pricing problem,Demand estimation,Substitution effect,Multinomial logit model, | en |
dc.relation.page | 68 | |
dc.identifier.doi | 10.6342/NTU202202790 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-08-26 | |
dc.contributor.author-college | 管理學院 | zh_TW |
dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
dc.date.embargo-lift | 2022-09-02 | - |
顯示於系所單位: | 資訊管理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2508202200480300.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.05 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。