Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84880
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱雪萍zh_TW
dc.contributor.advisorHsueh-Ping Chuen
dc.contributor.author吳翊廷zh_TW
dc.contributor.authorYi-Ting Wuen
dc.date.accessioned2023-03-19T22:30:33Z-
dc.date.available2023-12-26-
dc.date.copyright2022-10-08-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Lin Y, Ha A, Yan S: Methods for Studying DNA Single-Strand Break Repair and Signaling in Xenopus laevis Egg Extracts. Methods Mol Biol 2019, 1999:161-172.
2. Jackson SP, Bartek J: The DNA-damage response in human biology and disease. Nature 2009, 461(7267):1071-1078.
3. Kim BW, Jeong YE, Wong M, Martin LJ: DNA damage accumulates and responses are engaged in human ALS brain and spinal motor neurons and DNA repair is activatable in iPSC-derived motor neurons with SOD1 mutations. Acta Neuropathol Commun 2020, 8(1):7.
4. Chatterjee N, Walker GC: Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen 2017, 58(5):235-263.
5. Ciccia A, Elledge SJ: The DNA damage response: making it safe to play with knives. Mol Cell 2010, 40(2):179-204.
6. Yang J, Yu Y, Hamrick HE, Duerksen-Hughes PJ: ATM, ATR and DNA-PK: initiators of the cellular genotoxic stress responses. Carcinogenesis 2003, 24(10):1571-1580.
7. Blackford AN, Jackson SP: ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. Molecular Cell 2017, 66(6):801-817.
8. Jazayeri A, Falck J, Lukas C, Bartek J, Smith GC, Lukas J, Jackson SP: ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 2006, 8(1):37-45.
9. Brandsma I, Gent DC: Pathway choice in DNA double strand break repair: observations of a balancing act. Genome Integr 2012, 3(1):9.
10. Rass E, Grabarz A, Bertrand P, Lopez BS: Double Strand Break Repair, one mechanism can hide another: Alternative non-homologous end joining. Cancer Radiother 2012, 16(1):1-10.
11. Tomimatsu N, Mukherjee B, Harris JL, Boffo FL, Hardebeck MC, Potts PR, Khanna KK, Burma S: DNA-damage-induced degradation of EXO1 exonuclease limits DNA end resection to ensure accurate DNA repair. J Biol Chem 2017, 292(26):10779-10790.
12. Scully R, Panday A, Elango R, Willis NA: DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol 2019, 20(11):698-714.
13. Wilkinson KA, Henley JM: Mechanisms, regulation and consequences of protein SUMOylation. Biochem J 2010, 428:133-145.
14. Gareau JR, Lima CD: The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Bio 2010, 11(12):861-871.
15. Yang YF, He Y, Wang XX, Liang ZW, He G, Zhang P, Zhu HX, Xu NZ, Liang SF: Protein SUMOylation modification and its associations with disease. Open Biol 2017, 7(10).
16. Geiss-Friedlander R, Melchior F: Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 2007, 8(12):947-956.
17. Pozzi B, Mammi P, Bragado L, Giono LE, Srebrow A: When SUMO met splicing. Rna Biol 2018, 15(6):689-695.
18. Pozzi B, Bragado L, Will CL, Mammi P, Risso G, Urlaub H, Luhrmann R, Srebrow A: SUMO conjugation to spliceosomal proteins is required for efficient pre-mRNA splicing. Nucleic Acids Res 2017, 45(11):6729-6745.
19. Felisberto-Rodrigues C, Thomas JC, McAndrew C, Le Bihan YV, Burke R, Workman P, van Montfort RLM: Structural and functional characterisation of human RNA helicase DHX8 provides insights into the mechanism of RNA-stimulated ADP release. Biochem J 2019, 476:2521-2543.
20. Patel SB, Bellini M: The assembly of a spliceosomal small nuclear ribonucleoprotein particle. Nucleic Acids Research 2008, 36(20):6482-6493.
21. Vijayakumari D, Sharma AK, Bawa PS, Kumar R, Srinivasan S, Vijayraghavan U: Early splicing functions of fission yeast Prp16 and its unexpected requirement for gene Silencing is governed by intronic features. Rna Biol 2019, 16(6):754-769.
22. Chanarat S, Strasser K: Splicing and beyond: The many faces of the Prp19 complex. Bba-Mol Cell Res 2013, 1833(10):2126-2134.
23. Semlow DR, Staley JP: Staying on message: ensuring fidelity in pre-mRNA splicing. Trends Biochem Sci 2012, 37(7):263-273.
24. English MA, Lei L, Blake T, Wincovitch SM, Sood R, Azuma M, Hickstein D, Liu PP: Incomplete splicing, cell division defects, and hematopoietic blockage in dhx8 mutant zebrafish. Dev Dynam 2012, 241(5):879-889.
25. Adamson B, Smogorzewska A, Sigoillot FD, King RW, Elledge SJ: A genome-wide homologous recombination screen identifies the RNA-binding protein RBMX as a component of the DNA-damage response. Nat Cell Biol 2012, 14(3):318-328.
26. Zou L, Elledge SJ: Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 2003, 300(5625):1542-1548.
27. Symington LS: End Resection at Double-Strand Breaks: Mechanism and Regulation. Csh Perspect Biol 2014, 6(8).
28. Mukherjee B, Tomimatsu N, Burma S: Immunofluorescence-based methods to monitor DNA end resection. Methods Mol Biol 2015, 1292:67-75.
29. Tisi R, Vertemara J, Zampella G, Longhese MP: Functional and structural insights into the MRX/MRN complex, a key player in recognition and repair of DNA double-strand breaks. Comput Struct Biotec 2020, 18:1137-1152.
30. Krishnan R, Patel PS, Hakem R: BRCA1 and Metastasis: Outcome of Defective DNA Repair. Cancers 2022, 14(1).
31. Hendriks IA, Lyon D, Young C, Jensen LJ, Vertegaal ACO, Nielsen ML: Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation. Nat Struct Mol Biol 2017, 24(3):325-+.
32. Liu SH, Li XN, Zhang LD, Jiang JS, Hill RC, Cui YX, Hansen KC, Zhou ZH, Zhao R: Structure of the yeast spliceosomal postcatalytic P complex. Science 2017, 358(6368):1278-+.
33. Zhou ZX, Gong Q, Wang Y, Li MK, Wang L, Ding HF, Li PF: The biological function and clinical significance of SF3B1 mutations in cancer. Biomark Res 2020, 8(1).
34. Patidar PL, Viera T, Morales JC, Singh N, Motea EA, Khandelwal M, Fattah FJ: XRN2 interactome reveals its synthetic lethal relationship with PARP1 inhibition. Sci Rep-Uk 2020, 10(1).
35. Zhao F, Kim W, Kloeber JA, Lou Z: DNA end resection and its role in DNA replication and DSB repair choice in mammalian cells. Exp Mol Med 2020, 52(10):1705-1714.
36. Chen JY, Li P, Song LC, Bai L, Huen MSY, Liu YD, Lu LY: 53BP1 loss rescues embryonic lethality but not genomic instability of BRCA1 total knockout mice. Cell Death Differ 2020, 27(9):2552-2567.
37. Cruz-Garcia A, Lopez-Saavedra A, Huertas P: BRCA1 Accelerates CtIP-Mediated DNA-End Resection. Cell Rep 2014, 9(2):451-459.
38. Liu Y, Lu LY: BRCA1 and homologous recombination: implications from mouse embryonic development. Cell Biosci 2020, 10(1):49.
39. Morris JR, Boutell C, Keppler M, Densham R, Weekes D, Alamshah A, Butler L, Galanty Y, Pangon L, Kiuchi T et al: The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature 2009, 462(7275):886-U877.
40. Wu CS, Ouyang J, Mori E, Nguyen HD, Marechal A, Hallet A, Chen DJ, Zou L: SUMOylation of ATRIP potentiates DNA damage signaling by boosting multiple protein interactions in the ATR pathway. Gene Dev 2014, 28(13):1472-1484.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84880-
dc.description.abstractDNA 損傷反應能夠去偵測到損傷,並且誘導一連串的信號去啟動 DNA 損傷檢查點,進而去進行修復,以維持基因體的穩定性,而其中細胞對 DNA 損傷的反應主要受到 ATR-Chk1 信號路徑調控。然而, DNA 損傷反應的失調可能導致修復不完全、突變的產生和加速衰老,從而影響人類遺傳性疾病的發展。 DHX8 是一種 RNA 解旋酶,參與在 mRNA 的剪接和調節成熟 RNA 從細胞核中的釋放。在我們的研究中, Dr. Wu 和我發現當細胞暴露在不同的基因遺傳毒性的物質時,DHX8 的缺失會導致 ATR-Chk1 信號路徑的激活產生缺陷。我還發現沉默 DHX8 基因並不會影響參與 DNA 切除的蛋白質表現量,且 RPA 複合物徵召至 ssDNA 的能力顯著下降。這可以解釋為什麼當 DHX8 基因沉默時 ,ATR-Chk1 信號路徑的激活是有缺陷的。此外,即使在去除 CPT 並且修復8小時, HeLa 細胞中 DHX8基因的沉默也顯示出持續性的 γH2AX foci 。總之,這部分結果表明,在基因毒性的壓力下, DHX8 對於激活 ATR-Chk1 信號路徑和 DNA 修復是很重要的。在我的第二部分的研究中,我發現 DHX8 會被 SUMO2/3 修飾。我使用定點突變 PCR 和 IP 進一步研究,顯示出 DHX8 在賴氨酸 140 和賴氨酸 399 處被 SUMO 2/3修飾。有趣的是,紫外線照射可以增強 DHX8 的 SUMO修飾。這表明DHX8的SUMO 2/3修飾可能在 DDR 中具有重要的作用。在本研究中,我利用定點突變的方法將 SUMO 2/3修飾所需的兩個賴氨酸殘基突變。我發現 DHX82KR 突變體無法挽救細胞的生長缺陷,這表明 DHX8 的 SUMOylation 修飾可能在細胞增殖或細胞存活中起作用,這部分還需要更多實驗來釐清。除了 SUMOylation 之外,本研究的質譜分析還發現 DHX8 在 UV 照射下,可以在絲氨酸 460 和蘇氨酸 554 處被磷酸化。無論 DHX8 的磷酸化是否在 DDR 或 DNA 損傷中起作用,DHX8對 RNA 代謝的調節都需要更多的研究來被闡明。zh_TW
dc.description.abstractThe DNA damage response (DDR) senses the damage and induces a series of signaling pathways to activate the DNA damage checkpoint and repair DNA damage to maintain genomic stability. Therefore, dysregulation of the DNA damage response could cause incomplete repair, generation of mutations, and accelerated aging, which can lead to the development of human genetic disorders. DHX8 is an RNA helicase involving in splicing of mRNA and regulation of the release of mature RNA from the nucleus. In this work, Dr. Wu and I found that the loss of DHX8 resulted in the defects of ATR-Chk1 activation when cells were exposed to different genotoxic agents. The level of proteins involved in DNA resection was not altered after DHX8 knockdown, while the recruitment of RPA proteins to the ssDNA was significantly abolished. This may explain why the activation of ATR-Chk1 pathway was defective when DHX8 was silenced. Moreover, silence of DHX8 in HeLa cells showed persistent γH2AX foci even at 8 hours after removal of CPT. Together, this part of work showed that DHX8 is important for activation of the ATR-Chk1 pathway and the DNA repair upon genotoxic stress. In my second part of work, I found that DHX8 is conjugated by SUMO2/3. Further investigation using site-directed mutagenesis PCR and IP, I confirmed that DHX8 is SUMOylated at lysine 140 and lysine 399 by SUMO2/3. Interestingly, SUMOylation of DHX8 can be enhanced by UV irradiation. This suggests that the conjugation of DHX8 by SUMO2/3 may play a role in the DDR. I further generated DHX8 mutants, in which two-lysine residues of the domain for SUMO modification were conserved to arginine. I found that this DHX82KR mutant cannot rescue the growth defect. It suggests that DHX8 modification by SUMO may have a role in the regulation of cell proliferation or cell survival. Moreover, mass spectrometry analysis also indicates that DHX8 can be phosphorylated at serine 460 and threonine 554 upon UV irradiation. The role of phosphorylation of DHX8 in the DDR or DNA damage requires further studies.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:30:33Z (GMT). No. of bitstreams: 1
U0001-2608202211281200.pdf: 3210172 bytes, checksum: 3d5a0e9dd84d27009f21705dfa0da99e (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 i
Abbreviation ii
中文摘要 iv
Abstract v
Introduction 1
Materials and Methods 7
Results 15
Discussion 23
Figures 27
Tables 57
References 62
-
dc.language.isoen-
dc.titleDHX8 在 DNA 損傷反應中之角色zh_TW
dc.titleThe role of DHX8 in the DNA damage responseen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.coadvisor吳青錫zh_TW
dc.contributor.coadvisorChing-Shyi Wuen
dc.contributor.oralexamcommittee鄧述諄;譚婉玉zh_TW
dc.contributor.oralexamcommitteeShu-Chun Teng;Woan-Yuh Tarnen
dc.subject.keywordDHX8,DNA損傷反應,ATR-Chk1信號路徑,SUMOylation,磷酸化,zh_TW
dc.subject.keywordDHX8,DNA damage response,ATR-Chk1 pathway,SUMOylation,phosphorylation,en
dc.relation.page66-
dc.identifier.doi10.6342/NTU202202846-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-08-29-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept分子與細胞生物學研究所-
dc.date.embargo-lift2027-08-26-
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  目前未授權公開取用
3.14 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved