請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84879完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐立中(Li-Chung Hsu) | |
| dc.contributor.author | Shu-Ching Hsu | en |
| dc.contributor.author | 許舒晴 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:30:30Z | - |
| dc.date.copyright | 2022-10-05 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-26 | |
| dc.identifier.citation | 1. Medzhitov R: Recognition of microorganisms and activation of the immune response. Nature 2007, 449(7164):819-826. 2. Takeuchi O, Akira S: Pattern recognition receptors and inflammation. Cell 2010, 140(6):805-820. 3. Brubaker SW, Bonham KS, Zanoni I, Kagan JC: Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 2015, 33:257-290. 4. Kumagai Y, Akira S: Identification and functions of pattern-recognition receptors. J Allergy Clin Immunol 2010, 125(5):985-992. 5. Cao X: Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat Rev Immunol 2016, 16(1):35-50. 6. Hashimoto C, Hudson KL, Anderson KV: The Toll gene of drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 1988, 52(2):269-279. 7. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA: The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996, 86:973-983. 8. Bowie A, O'Neill LA: The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. J Leukoc Biol 2000, 67(4):508-514. 9. Bell JK, Mullen GED, Leifer CA, Mazzoni A, Davies DR, Segal DM: Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol 2003, 24(10):528-533. 10. Botos I, Segal DM, Davies DR: The structural biology of Toll-like receptors. Structure 2011, 19(4):447-459. 11. Akira S, Uematsu S, Takeuchi O: Pathogen recognition and innate immunity. Cell 2006, 124(4):783-801. 12. Kawai T, Akira S: The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010, 11(5):373-384. 13. Kawai T, Akira S: Regulation of innate immune signalling pathways by the tripartite motif (TRIM) family proteins. EMBO Mol Med 2011, 3(9):513-527. 14. Kawai T, Akira S: Innate immune recognition of viral infection. Nat Immunol 2006, 7(2):131-137. 15. Barton GM: Viral recognition by Toll-like receptors. Semin Immunol 2007, 19(1):33-40. 16. Blasius AL, Beutler B: Intracellular toll-like receptors. Immunity 2010, 32(3):305-315. 17. Ewald SE, Lee BL, Lau L, Wickliffe KE, Shi GP, Chapman HA, Barton GM: The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 2008, 456(7222):658-662. 18. Yang Y, Liu B, Dai J, Srivastava PK, Zammit DJ, Lefrancois L, Li Z: Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity 2007, 26(2):215-226. 19. Takahashi K, Shibata T, Akashi-Takamura S, Kiyokawa T, Wakabayashi Y, Tanimura N, Kobayashi T, Matsumoto F, Fukui R, Kouro T et al: A protein associated with Toll-like receptor (TLR) 4 (PRAT4A) is required for TLR-dependent immune responses. J Exp Med 2007, 204(12):2963-2976. 20. Tabeta K, Hoebe K, Janssen EM, Du X, Georgel P, Crozat K, Mudd S, Mann N, Sovath S, Goode J et al: The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat Immunol 2006, 7(2):156-164. 21. Brinkmann MM, Spooner E, Hoebe K, Beutler B, Ploegh HL, Kim YM: The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J Cell Biol 2007, 177(2):265-275. 22. Kim YM, Brinkmann MM, Paquet ME, Ploegh HL: UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature 2008, 452(7184):234-238. 23. Fukui R, Saitoh S, Matsumoto F, Kozuka-Hata H, Oyama M, Tabeta K, Beutler B, Miyake K: Unc93B1 biases Toll-like receptor responses to nucleic acid in dendritic cells toward DNA- but against RNA-sensing. J Exp Med 2009, 206(6):1339-1350. 24. Fukui R, Saitoh S, Kanno A, Onji M, Shibata T, Ito A, Onji M, Matsumoto M, Akira S, Yoshida N et al: Unc93B1 restricts systemic lethal inflammation by orchestrating Toll-like receptor 7 and 9 trafficking. Immunity 2011, 35(1):69-81. 25. Majer O, Liu B, Woo BJ, Kreuk LSM, Van Dis E, Barton GM: Release from UNC93B1 reinforces the compartmentalized activation of select TLRs. Nature 2019, 575(7782):371-374. 26. Rael VE, Barton GM: Toll-like receptors form different complexes with UNC93B1. Nat Struct Mol Biol 2021, 28(2):121-123. 27. Majer O, Liu B, Kreuk LSM, Krogan N, Barton GM: UNC93B1 recruits syntenin-1 to dampen TLR7 signalling and prevent autoimmunity. Nature 2019, 575(7782):366-370. 28. Onji M, Kanno A, Saitoh S, Fukui R, Motoi Y, Shibata T, Matsumoto F, Lamichhane A, Sato S, Kiyono H et al: An essential role for the N-terminal fragment of Toll-like receptor 9 in DNA sensing. Nat Commun 2013, 4:1949. 29. Kanno A, Yamamoto C, Onji M, Fukui R, Saitoh S, Motoi Y, Shibata T, Matsumoto F, Muta T, Miyake K: Essential role for Toll-like receptor 7 (TLR7)-unique cysteines in an intramolecular disulfide bond, proteolytic cleavage and RNA sensing. Int Immunol 2013, 25(7):413-422. 30. Hipp MM, Shepherd D, Booth S, Waithe D, Reis e Sousa C, Cerundolo V: The Processed Amino-Terminal Fragment of Human TLR7 Acts as a Chaperone To Direct Human TLR7 into Endosomes. J Immunol 2015, 194(11):5417-5425. 31. Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW, Iwasaki A, Flavell RA: Recognition of single-stranded RNA viruses by Toll-like receptor 7. PNAS 2004, 101(15):5598-5603. 32. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S: Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004, 303(5663):1526-1529. 33. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C: Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004, 303(5663):1529-1531. 34. Bhagchandani S, Johnson JA, Irvine DJ: Evolution of Toll-like receptor 7/8 agonist therapeutics and their delivery approaches: From antiviral formulations to vaccine adjuvants. Adv Drug Deliv Rev 2021, 175:113803. 35. Eberle F, Sirin M, Binder M, Dalpke AH: Bacterial RNA is recognized by different sets of immunoreceptors. Eur J Immunol 2009, 39(9):2537-2547. 36. Mancuso G, Gambuzza M, Midiri A, Biondo C, Papasergi S, Akira S, Teti G, Beninati C: Bacterial recognition by TLR7 in the lysosomes of conventional dendritic cells. Nat Immunol 2009, 10(6):587-594. 37. Krug A, French AR, Barchet W, Fischer JA, Dzionek A, Pingel JT, Orihuela MM, Akira S, Yokoyama WM, Colonna M: TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 2004, 21(1):107-119. 38. Krug A, Luker GD, Barchet W, Leib DA, Akira S, Colonna M: Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood 2004, 103(4):1433-1437. 39. Bafica A, Santiago HC, Goldszmid R, Ropert C, Gazzinelli RT, Sher A: Cutting edge: TLR9 and TLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi infection. J Immunol 2006, 177(6):3515-3519. 40. Takaoka A, Yanai H, Kondo S, Duncan G, Negishi H, Mizutani T, Kano S, Honda K, Ohba Y, Mak TW et al: Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 2005, 434(7030):243-249. 41. Kawasaki T, Kawai T: Toll-like receptor signaling pathways. Front Immunol 2014, 5:461. 42. Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, Yamamoto M, Terai K, Matsuda M, Inoue J, Uematsu S et al: Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol 2004, 5(10):1061-1068. 43. Hoshino K, Sugiyama T, Matsumoto M, Tanaka T, Saito M, Hemmi H, Ohara O, Akira S, Kaisho T: IkappaB kinase-alpha is critical for interferon-alpha production induced by Toll-like receptors 7 and 9. Nature 2006, 440(7086):949-953. 44. Shinohara ML, Lu L, Bu J, Werneck MB, Kobayashi KS, Glimcher LH, Cantor H: Osteopontin expression is essential for interferon-alpha production by plasmacytoid dendritic cells. Nat Immunol 2006, 7(5):498-506. 45. Gotoh K, Tanaka Y, Nishikimi A, Inayoshi A, Enjoji M, Takayanagi R, Sasazuki T, Fukui Y: Differential requirement for DOCK2 in migration of plasmacytoid dendritic cells versus myeloid dendritic cells. Blood 2008, 111(6):2973-2976. 46. Guiducci C, Ghirelli C, Marloie-Provost MA, Matray T, Coffman RL, Liu YJ, Barrat FJ, Soumelis V: PI3K is critical for the nuclear translocation of IRF-7 and type I IFN production by human plasmacytoid predendritic cells in response to TLR activation. J Exp Med 2008, 205(2):315-322. 47. Dallari S, Macal M, Loureiro ME, Jo Y, Swanson L, Hesser C, Ghosh P, Zuniga EI: Src family kinases Fyn and Lyn are constitutively activated and mediate plasmacytoid dendritic cell responses. Nat Commun 2017, 8:14830. 48. Fitzgerald-Bocarsly P, Dai J, Singh S: Plasmacytoid dendritic cells and type I IFN: 50 years of convergent history. Cytokine Growth Factor Rev 2008, 19(1):3-19. 49. Gilliet M, Cao W, Liu YJ: Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 2008, 8(8):594-606. 50. Watowich SS, Liu YJ: Mechanisms regulating dendritic cell specification and development. Immunol Rev 2010, 238(1):76-92. 51. Wang Y, Swiecki M, McCartney SA, Colonna M: dsRNA sensors and plasmacytoid dendritic cells in host defense and autoimmunity. Immunol Rev 2011, 243(1):74-90. 52. Karrich JJ, Jachimowski LC, Uittenbogaart CH, Blom B: The plasmacytoid dendritic cell as the Swiss army knife of the immune system: molecular regulation of its multifaceted functions. J Immunol 2014, 193(12):5772-5778. 53. Honda K, Yanai H, Negishi H: IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 2005, 434:772-777. 54. Honda K, Ohba Y, Yanai H: Spatiotemporal regulation of MyD88–IRF-7 signalling for robust type-I interferon induction. Nature 2005, 434:1035–1040. 55. Swiecki M, Colonna M: The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol 2015, 15(8):471-485. 56. Tsokos GC, Lo MS, Costa Reis P, Sullivan KE: New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol 2016, 12(12):716-730. 57. Banchereau J, Pascual V: Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 2006, 25(3):383-392. 58. Crow YJ, Stetson DB: The type I interferonopathies: 10 years on. Nat Rev Immunol 2021. 59. Coutant F, Miossec P: Altered dendritic cell functions in autoimmune diseases: distinct and overlapping profiles. Nat Rev Rheumatol 2016, 12(12):703-715. 60. Marshak-Rothstein A: Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 2006, 6(11):823-835. 61. Chasset F, Dayer JM, Chizzolini C: Type I Interferons in Systemic Autoimmune Diseases: Distinguishing Between Afferent and Efferent Functions for Precision Medicine and Individualized Treatment. Front Pharmacol 2021, 12:633821. 62. Ciechanover A: The unravelling of the ubiquitin system. Nat Rev Mol Cell Biol 2015, 16(5):322-324. 63. Damgaard RB: The ubiquitin system: from cell signalling to disease biology and new therapeutic opportunities. Cell Death Differ 2021, 28(2):423-426. 64. Swatek KN, Komander D: Ubiquitin modifications. Cell Res 2016, 26(4):399-422. 65. Kwon YT, Ciechanover A: The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy. Trends Biochem Sci 2017, 42(11):873-886. 66. Araki T, Nagarajan R, Milbrandt J: Identification of genes induced in peripheral nerve after injury. Expression profiling and novel gene discovery. J Biol Chem 2001, 276(36):34131-34141. 67. Araki T, Milbrandt J: ZNRF Proteins Constitute a Family of Presynaptic E3 Ubiquitin Ligases. J Neurosci 2003, 23(28):9385-9394. 68. Wakatsuki S, Saitoh F, Araki T: ZNRF1 promotes Wallerian degeneration by degrading AKT to induce GSK3B-dependent CRMP2 phosphorylation. Nat Cell Biol 2011, 13(12):1415-1423. 69. Hao HX, Xie Y, Zhang Y, Charlat O, Oster E, Avello M, Lei H, Mickanin C, Liu D, Ruffner H et al: ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 2012, 485(7397):195-200. 70. Neutzner A, Neutzner M, Benischke AS, Ryu SW, Frank S, Youle RJ, Karbowski M: A systematic search for endoplasmic reticulum (ER) membrane-associated RING finger proteins identifies Nixin/ZNRF4 as a regulator of calnexin stability and ER homeostasis. J Biol Chem 2011, 286(10):8633-8643. 71. Bist P, Cheong WS, Ng A, Dikshit N, Kim BH, Pulloor NK, Khameneh HJ, Hedl M, Shenoy AR, Balamuralidhar V et al: E3 Ubiquitin ligase ZNRF4 negatively regulates NOD2 signalling and induces tolerance to MDP. Nat Commun 2017, 8:15865. 72. Lee CY, Lai TY, Tsai MK, Chang YC, Ho YH, Yu IS, Yeh TW, Chou CC, Lin YS, Lawrence T et al: The ubiquitin ligase ZNRF1 promotes caveolin-1 ubiquitination and degradation to modulate inflammation. Nat Commun 2017, 8:15502. 73. Shen CH, Chou CC, Lai TY, Hsu JE, Lin YS, Liu HY, Chen YK, Ho IL, Hsu PH, Chuang TH et al: ZNRF1 Mediates Epidermal Growth Factor Receptor Ubiquitination to Control Receptor Lysosomal Trafficking and Degradation. Front Cell Dev Biol 2021, 9:642625. 74. O'Gorman S, Dagenais NA, Qian M, Marchuk Y: Protamine-Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc Natl Acad Sci USA 1997, 94:14602-14607. 75. Chen CY, Hung YF, Tsai CY, Shih YC, Chou TF, Lai MZ, Wang TF, Hsueh YP: Transcriptomic Analysis and C-Terminal Epitope Tagging Reveal Differential Processing and Signaling of Endogenous TLR3 and TLR7. Front Immunol 2021, 12:686060. 76. Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H: Transcriptional Activation by Tetracyclines in Mammalian Cells. Science 1995, 268:1766-1769. 77. 陳彥剴: ZNRF1在表皮生長因子受體的運輸與降解所扮演之角色. 2016. 78. Makarova O, Kamberov E, Margolis B: Generation of Deletionand Point Mutations withOne Primer in a SingleCloning Step. BioTechniques 2000, 29: 970-972. 79. Maeda T, Murata K, Fukushima T, Sugahara K, Tsuruda K, Anami M, Onimaru Y, Tsukasaki K, Tomonaga M, Moriuchi R et al: A novel plasmacytoid dendritic cell line, CAL-1, established from a patient with blastic natural killer cell lymphoma. Int J Hematol 2005, 81(2):148-154. 80. Uematsu S, Sato S, Yamamoto M, Hirotani T, Kato H, Takeshita F, Matsuda M, Coban C, Ishii KJ, Kawai T et al: Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-{alpha} induction. J Exp Med 2005, 201(6):915-923. 81. O'Neill LAJ, Bowie AG: The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 2007, 7(5):353-364. 82. Gonzalez-Navajas JM, Lee J, David M, Raz E: Immunomodulatory functions of type I interferons. Nat Rev Immunol 2012, 12(2):125-135. 83. Ivashkiv LB, Donlin LT: Regulation of type I interferon responses. Nat Rev Immunol 2014, 14(1):36-49. 84. Deane JA, Pisitkun P, Barrett RS, Feigenbaum L, Town T, Ward JM, Flavell RA, Bolland S: Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity 2007, 27(5):801-810. 85. Vollmer J, Tluk S, Schmitz C, Hamm S, Jurk M, Forsbach A, Akira S, Kelly KM, Reeves WH, Bauer S et al: Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J Exp Med 2005, 202(11):1575-1585. 86. Savarese E, Chae OW, Trowitzsch S, Weber G, Kastner B, Akira S, Wagner H, Schmid RM, Bauer S, Krug A: U1 small nuclear ribonucleoprotein immune complexes induce type I interferon in plasmacytoid dendritic cells through TLR7. Blood 2006, 107(8):3229-3234. 87. Kaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, van Vollenhoven R, Ruiz-Irastorza G, Hughes G: Systemic lupus erythematosus. Nat Rev Dis Primers 2016, 2:16039. 88. Sakata K, Nakayamada S, Miyazaki Y, Kubo S, Ishii A, Nakano K, Tanaka Y: Up-Regulation of TLR7-Mediated IFN-alpha Production by Plasmacytoid Dendritic Cells in Patients With Systemic Lupus Erythematosus. Front Immunol 2018, 9:1957. 89. Brown GJ, Canete PF, Wang H, Medhavy A, Bones J, Roco JA, He Y, Qin Y, Cappello J, Ellyard JI et al: TLR7 gain-of-function genetic variation causes human lupus. Nature 2022, 605(7909):349-356. 90. Mannoor K, Matejuk A, Xu Y, Beardall M, Chen C: Expression of natural autoantibodies in MRL-lpr mice protects from lupus nephritis and improves survival. J Immunol 2012, 188(8):3628-3638. 91. Pelka K, Latz E: IRF5, IRF8, and IRF7 in human pDCs - the good, the bad, and the insignificant? Eur J Immunol 2013, 43(7):1693-1697. 92. Chuang YC, Tseng JC, Huang LR, Huang CM, Huang CF, Chuang TH: Adjuvant Effect of Toll-Like Receptor 9 Activation on Cancer Immunotherapy Using Checkpoint Blockade. Front Immunol 2020, 11:1075. 93. Sasai M, Linehan MM, Iwasaki A: Bifurcation of Toll-like receptor 9 signaling by adaptor protein 3. Science 2010, 329(5998):1530-1534. 94. Hayashi K, Taura M, Iwasaki A: The interaction between IKKalpha and LC3 promotes type I interferon production through the TLR9-containing LAPosome. Sci Signal 2018, 11(528). 95. Guiducci C, Ott G, Chan JH, Damon E, Calacsan C, Matray T, Lee KD, Coffman RL, Barrat FJ: Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation. J Exp Med 2006, 203(8):1999-2008. 96. Li WW, Nie Y, Yang Y, Ran Y, Luo WW, Xiong MG, Wang SY, Xu ZS, Wang YY: Ubiquitination of TLR3 by TRIM3 signals its ESCRT-mediated trafficking to the endolysosomes for innate antiviral response. Proc Natl Acad Sci U S A 2020, 117(38):23707-23716. 97. Castro C, Gourley M: Diagnostic testing and interpretation of tests for autoimmunity. J Allergy Clin Immunol 2010, 125(2 Suppl 2):S238-247. 98. Inshaw JRJ, Cutler AJ, Burren OS, Stefana MI, Todd JA: Approaches and advances in the genetic causes of autoimmune disease and their implications. Nat Immunol 2018, 19(7):674-684. 99. Bekeredjian-Ding IB, Wagner M, Hornung V, Giese T, Schnurr M, Endres S, Hartmann G: Plasmacytoid dendritic cells control TLR7 sensitivity of naive B cells via type I IFN. J Immunol 2005, 174(7):4043-4050. 100. Berland R, Fernandez L, Kari E, Han JH, Lomakin I, Akira S, Wortis HH, Kearney JF, Ucci AA, Imanishi-Kari T: Toll-like receptor 7-dependent loss of B cell tolerance in pathogenic autoantibody knockin mice. Immunity 2006, 25(3):429-440. 101. Soni C, Wong EB, Domeier PP, Khan TN, Satoh T, Akira S, Rahman ZS: B cell-intrinsic TLR7 signaling is essential for the development of spontaneous germinal centers. J Immunol 2014, 193(9):4400-4414. 102. Desnues B, Macedo AB, Roussel-Queval A, Bonnardel J, Henri S, Demaria O, Alexopoulou L: TLR8 on dendritic cells and TLR9 on B cells restrain TLR7-mediated spontaneous autoimmunity in C57BL/6 mice. Proc Natl Acad Sci U S A 2014, 111(4):1497-1502. 103. Christensen SR, Shupe J, Nickerson K, Kashgarian M, Flavell RA, Shlomchik MJ: Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 2006, 25(3):417-428. 104. Santiago-Raber ML, Dunand-Sauthier I, Wu T, Li QZ, Uematsu S, Akira S, Reith W, Mohan C, Kotzin BL, Izui S: Critical role of TLR7 in the acceleration of systemic lupus erythematosus in TLR9-deficient mice. J Autoimmun 2010, 34(4):339-348. 105. Soni C, Perez OA, Voss WN, Pucella JN, Serpas L, Mehl J, Ching KL, Goike J, Georgiou G, Ippolito GC et al: Plasmacytoid Dendritic Cells and Type I Interferon Promote Extrafollicular B Cell Responses to Extracellular Self-DNA. Immunity 2020, 52(6):1022-1038 e1027. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84879 | - |
| dc.description.abstract | 第七型類鐸受體(TLR7)及第九型類鐸受體(TLR9)是兩個表現於漿細胞樣樹突細胞(plasmacytoid dendritic cells)的胞內體(endosome)類鐸受體,他們會辨識核酸產生大量的第一型干擾素(type I interferons)來抵禦病毒。然而過多的第一型干擾素可能會造成問題如自體免疫疾病,因此第一型干擾素的產生需要嚴密調控。我們實驗室過去發現一個E3泛素接合酶(E3 ubiquitin ligase) ──ZNRF1會透過促進caveolin-1的泛素化(ubiquitination)及降解(degradation)來正向調控第四型類鐸受體(TLR4)訊息傳遞路徑。然而,在第三型類鐸受體(TLR3)介導的免疫反應中,ZNRF1作為一個負向調控者會對第三型類鐸受體進行泛素化並造成其走向溶酶体式(lysosomal)降解。本篇研究我們發現在R848(第七型類鐸受體的配體)及CpG A(第九型類鐸受體的配體)的刺激下,類FMS酪氨酸激酶-3受體所分化的漿細胞樣樹突細胞(Flt3L-pDCs)或人類漿細胞樣樹突細胞(CAL-1)在ZNRF1缺失的情況下會增加第一型干擾素的表現,而ZNRF1的E3泛素接合酶活性對於其負向調控第七型類鐸受體誘發的第一型干擾素產生是重要的。類似於TLR3,ZNRF1會與TLR7及TLR9互動。ZNRF1會促進在第九型類鐸受體的離胺酸(lysine)932位點(residue)進行的離胺酸63型多泛素化 (K63-linked polyubiquitination),而這樣的調控是需要其E3泛素接合酶活性。我們更進一步發現ZNRF1缺失的老化老鼠有脾臟腫大、動脈周圍淋巴鞘(periarteriolar lymphoid sheath)擴大及自體抗體增加的現象。去除第七型類鐸受體或骨髓分化因子八八蛋白質(MyD88)後減緩這些表現型(phenotype),意味著ZNRF1有潛力扮演預防第七型類鐸受體所致自體免疫的角色。總結來說,我們認為ZNRF1負向調控第七及第九型類鐸受體訊息傳遞,並藉由降低過量第一型干擾素的產生以減緩自體免疫疾病的發展。 | zh_TW |
| dc.description.abstract | Toll-like receptor (TLR) 7 and TLR9 are two of the endosomal TLRs that expressed in plasmacytoid dendritic cells (pDCs). They sense nucleic acids and produce indispensable amounts of type I interferons (IFNs) for anti-viral response. However, excessive type I IFNs may lead to several disadvantages such as the autoimmunity, therefore type I IFNs production needs to be tightly regulated. Our lab previously found that one of the E3 ubiquitin ligases — Zinc and RING finger 1 (ZNRF1) positively regulates TLR4 signaling pathway through promoting caveolin-1 ubiquitination and degradation. However, in TLR3-mediated immune response, ZNRF1 serves as a negative regulator by ubiquitinating TLR3 for lysosomal degradation. In this study, we discovered that deletion of ZNRF1 in primary mouse fms-like tyrosine kinase 3 ligand (Flt3L)-driven pDCs or human pDCs, CAL-1, enhances type I IFNs mRNA expression after stimulation of R848 (TLR7 ligand) and CpG A (TLR9 ligand). Besides, ZNRF1 E3 ubiquitin ligase activity is required for its negative regulation of TLR7-driven type I IFN production. Similar to TLR3, ZNRF1 interacts with TLR7 and TLR9, and promotes K63-linked polyubiquitination on TLR9 lysine 932 residue in an E3 ubiquitin ligase activity-dependent manner. We further discovered that aged Znrf1-/- mice showed splenomegaly, enlarged periarteriolar lymphoid sheath and increased autoantibodies production. Depletion of TLR7 or MyD88 in Znrf1-/- mice attenuates these phenotypes, implying that ZNRF1 plays a potential role in preventing TLR7-dependent autoimmunity. Together, our data suggest that ZNRF1 negatively regulates TLR7/9 signaling, thereby decreasing the excessive production of type I IFNs and preventing the development of autoimmunity. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:30:30Z (GMT). No. of bitstreams: 1 U0001-2608202211023000.pdf: 3731483 bytes, checksum: 1091a7af2dc036f2d80ca9e0f03d27f8 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書......ii 致謝......iii 摘要......iv Abstract......v Contents......vii Introduction......1 Pattern-recognition receptors (PRRs) and pathogen-associated molecular patterns (PAMPs)......1 TLRs......2 Nucleic acid-sensing TLRs......5 TLR7/9 trafficking and processing......6 TLR7/9 and their ligands......7 TLR7/9 signaling......9 pDC and type I IFNs......11 Type I IFNs and autoimmunity......12 Ubiquitination......13 Zinc and RING finger 1 (ZNRF1) and ZNRF family......14 ZNRF1 and immunity......15 Aim......17 Materials and Methods......18 Reagents and antibodies......18 Mice......22 Generation of FMS-like tyrosine kinase 3 ligand (Flt3L) driven bone marrow-derived dendritic cells (BMDCs) or pDCs......24 Cell culture and stimulation......25 Generation of ZNRF1-knockout CAL-1 cells by CRISPR-Cas9 system......26 Verification of ZNRF1 knockout in CAL-1 cells......27 Reconstitution of ZNRF1 wild-type and C184A mutants in ZNRF1 knockout CAL-1 cells......29 Construction of TLR7(K953R)-AcGFP and TLR9(K932R)-AcGFP plasmids......29 RNA extraction and Real-Time Quantitative PCR (RT-qPCR)......30 Preparation of cell lysates......33 Subcellular fractionation......33 Immunoprecipitation/Ubiquitination assay......34 Immunoblotting......35 Serological tests for autoantibodies......36 Histology......36 Statistical analysis......37 Results......38 ZNRF1 depletion in Flt3L-pDCs enhances the mRNA expression of type I IFNs after R848 and CpG A stimulation......39 ZNRF1 depletion in Flt3L-BMDCs enhances the signaling pathway involved in type I IFNs production upon R848 treatment......39 ZNRF1 depletion enhances type I IFN signaling pathway after TLR7 activation in human CAL-1 cells......41 E3 ubiquitin ligase activity of ZNRF1 is required for modulating type I IFN signaling after R848 stimulation......42 ZNRF1 interacts with TLR7 and TLR9......43 TLR9 ubiquitination is influenced by K932R mutation, and K63-linked ubiquitination is specifically mediated by enzymatic function of ZNRF1......44 ZNRF1-deficient mice develop more severe autoimmune-related symptoms, which can be reversed by deletion of TLR7 and MyD88......45 Discussion......49 The role of ZNRF1 in TLR7 mediated type I IFN expression......50 The role of ZNRF1 in TLR7/TLR9-mediated proinflammatory cytokine production......51 The expression of TLR7-AcGFP in HEK 293T cells......53 The ubiquitination of TLR9 in HEK293T......53 The contribution of ZNRF1 in autoimmunity......54 The involvement of B cells in TLR7/9-mediated autoimmunity......54 The roles of TLR7 and TLR9 in autoimmunity......55 Figures......57 Figure 1. ZNRF1 depletion in mice does not influence Flt3L-induced BMDCs and pDCs differentiation......57 Figure 2. Deletion of ZNRF1 enhances type I IFN mRNA expression after R848 and CpG A stimulation in Flt3L-pDCs......59 Figure 3. ZNRF1 depletion in Flt3L-BMDCs enhances signaling involved in type I IFN production upon R848 treatment......60 Figure 4. ZNRF1 depletion in CAL-1 cells enhances type I IFN mRNA expression upon R848 treatment......61 Figure 5. ZNRF1 depletion in CAL-1 cells increases signaling involved in type I IFN production upon R848 treatment......62 Figure 6. ZNRF1 depletion upregulates IRF7 nuclear translocation in CAL-1 cells after R848 stimulation......63 Figure 7. The E3 ubiquitin ligase activity of ZNRF1 is essential for regulating type I IFN expression upon R848 treatment......64 Figure 8. ZNRF1 interacts with TLR7 and TLR9......65 Figure 9. ZNRF1 catalyzes TLR9 K63-linked ubiquitination at K932......67 Figure 10. Depletion of TLR7 under Znrf1-/- background does not cause any developmental abnormality......70 Figure 11. Aged Znrf1-/- mice generate slightly more anti-SmRNP and anti-dsDNA autoantibodies in a TLR7-MyD88 dependent manner......71 Figure 12. ZNRF1-deficient mice show enlarged white pulps in the spleen, which is reversed by deletion of TLR7 or MyD88......72 Figure S1. ZNRF1 expression is induced by TLR7/9 ligands......73 Figure S2. Deletion of ZNRF1 in mice develops autoimmune-like symptoms......74 References......75 | |
| dc.language.iso | en | |
| dc.subject | 自體免疫 | zh_TW |
| dc.subject | 第一型鋅暨環指泛素連接酶 | zh_TW |
| dc.subject | 第七型類鐸受體 | zh_TW |
| dc.subject | 第九型類鐸受體 | zh_TW |
| dc.subject | 漿細胞樣樹突細胞 | zh_TW |
| dc.subject | 第一型干擾素 | zh_TW |
| dc.subject | Toll-like receptor 7 | en |
| dc.subject | autoimmunity | en |
| dc.subject | type Ι interferon | en |
| dc.subject | plasmacytoid dendritic cell | en |
| dc.subject | Toll-like receptor 9 | en |
| dc.subject | Zinc and ring finger 1 | en |
| dc.title | ZNRF1調控第七/九型類鐸受體誘發的發炎反應之功能 | zh_TW |
| dc.title | The regulatory function of ZNRF1 in TLR7/9-driven inflammatory responses | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李建國(Chien-Kuo Lee),呂春敏(Chuen-Miin Leu) | |
| dc.subject.keyword | 第一型鋅暨環指泛素連接酶,第七型類鐸受體,第九型類鐸受體,漿細胞樣樹突細胞,第一型干擾素,自體免疫, | zh_TW |
| dc.subject.keyword | Zinc and ring finger 1,Toll-like receptor 7,Toll-like receptor 9,plasmacytoid dendritic cell,type Ι interferon,autoimmunity, | en |
| dc.relation.page | 87 | |
| dc.identifier.doi | 10.6342/NTU202202844 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-29 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2027-08-26 | - |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2608202211023000.pdf 未授權公開取用 | 3.64 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
