請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84873
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 韓仁毓(Jen-Yu Han) | |
dc.contributor.author | Yi-Huang Lu | en |
dc.contributor.author | 呂奕篁 | zh_TW |
dc.date.accessioned | 2023-03-19T22:30:10Z | - |
dc.date.copyright | 2022-09-26 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-26 | |
dc.identifier.citation | Ariawan, I. M. A., Subagio, B. S., & Setiadji, B. H. (2015). Development of asphalt pavement temperature model for tropical climate conditions in West Bali region. Procedia Engineering, 125, 474-480. AASHTO. (2000). Hot-Mix Asphalt Paving Handbook, Washington, DC: U. S. Army Corps of Engineers. ASTM. (2011). Standard test method for theoretical maximum specific gravity and density of bituminous paving mixtures. ASTM International. ASTM. (2017). Standard Guide for Evaluation of Convective Heat Transfer Coefficient of Liquids. ASTM International. ASTM. (2017). Standard test method for bulk specific gravity and density of non-absorptive compacted asphalt mixtures. ASTM International. ASTM. (2018). Standard Practice for Measuring and Compensating for Emissivity Using Infrared Imaging Radiometers. ASTM International. ASTM. (2019). Standard Practice for Guarded-Hot-Plate Design Using Circular Line-Heat Sources. ASTM International. ASTM. (2021). Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. ASTM International. Barber, E. S. (1957). Calculation of maximum pavement temperatures from weather reports. Highway Research Board Bulletin(168). Brown, E. R. (1984). Experiences of Corps of Engineers in compaction of hot asphalt mixtures. ASTM International. Côté, J., Grosjean, V., & Konrad, J.-M. (2013). Thermal conductivity of bitumen concrete. Canadian Journal of Civil Engineering, 40(2), 172-180. Carslaw, H. S., & Jaeger, J. C. (1959). Conduction of heat in solids. Chen, J., Wang, H., & Xie, P. (2019). Pavement temperature prediction: Theoretical models and critical affecting factors. Applied Thermal Engineering, 158, 113755. Chen, J., Zhang, M., Wang, H., & Li, L. (2015). Evaluation of thermal conductivity of asphalt concrete with heterogeneous microstructure. Applied Thermal Engineering, 84, 368-374. Davies, M. G. (2004). Building heat transfer. John Wiley & Sons. Du, Z., Yuan, J., Xiao, F., & Hettiarachchi, C. (2021). Application of image technology on pavement distress detection: A review. Measurement, 184, 109900. Golden, J. S., & Kaloush, K. E. (2006). Mesoscale and microscale evaluation of surface pavement impacts on the urban heat island effects. The international journal of pavement engineering, 7(1), 37-52. He, L. (2016). Preparation and cooling mechanism of composite phase change heat storage asphalt pavement materials. Chongqing Jiaotong University: Chongqing, China. Hunce, S.Y., Soyer, E., & Akgiray, O. (2016). Characterization of granular materials with internal pores for hydraulic calculations involving fixed and fluidized beds. Industrial & Engineering Chemistry Research, 55(31), 8636-8651. Incropera, DeWitt, & Lavine. (2007). Fundamentals of heat and mass transfer. J. Wiley. Levy, G. (2002). An introduction to quasi-random numbers. Numerical Algorithms Group Ltd, 143. Li, H., Harvey, J., & Kendall, A. (2013). Field measurement of albedo for different land cover materials and effects on thermal performance. Building and environment, 59, 536-546. Mahboub, K. C., Liu, Y., & Allen, D. L. (2004). Evaluation of temperature responses in concrete pavement. Journal of Transportation Engineering, 130(3), 395-401. Matić, B., Matić, D., Ćosić, Đ., Sremac, S., Tepić, G., & Ranitović, P. (2013). A model for the pavement temperature prediction at specified depth. Metalurgija, 52(4), 505-508. McAdams, W.H. (1954) Heat Transmission. McGraw-Hill, New York. Milovanović, B., & Banjad Pečur, I. (2016). Review of active IR thermography for detection and characterization of defects in reinforced concrete. Journal of Imaging, 2(2), 11. Moaveni, S. (2011). Finite element analysis theory and application with ANSYS, 3/e. Pearson Education India. Nuijten, A. D. (2016). Runway temperature prediction, a case study for Oslo Airport, Norway. Cold Regions Science and Technology, 125, 72-84. Palyvos, J. (2008). A survey of wind convection coefficient correlations for building envelope energy systems’ modeling. Applied Thermal Engineering, 28(8-9), 801-808. Parker, C. F. (1959). Temperature in bituminous mixtures. Highway Research Board Special Report, 54, 28-33. Plati, C., Georgiou, P., & Loizos, A. (2014). Use of infrared thermography for assessing HMA paving and compaction. Transportation Research Part C: Emerging Technologies, 46, 192-208. Qin, Y. (2016). Pavement surface maximum temperature increases linearly with solar absorption and reciprocal thermal inertial. International Journal of Heat and Mass Transfer, 97, 391-399. Richter, H. (2017). Mote3D: an open-source toolbox for modelling periodic random particulate microstructures. Modelling and Simulation in Materials Science and Engineering, 25(3), 035011. Santamouris, M., Synnefa, A., & Karlessi, T. (2011). Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Solar energy, 85(12), 3085-3102. Solaimanian, M., & Kennedy, T. W. (1993). Predicting maximum pavement surface temperature using maximum air temperature and hourly solar radiation. Transportation Research Record, 1-1. Straub, A. L., Schenck Jr, H., & Przbycien, F. E. (1968). Bituminous pavement temperature related to climate. Highway Research Record(256). TAŞKAYA, S. (2021). An Investigation on Profile Tension Measurement and Dynamic Load Analysis in Steel Roofs. Sciennovation, 2(2), 6-16. Usamentiaga, R., Venegas, P., Guerediaga, J., Vega, L., Molleda, J., & Bulnes, F. G. (2014). Infrared thermography for temperature measurement and non-destructive testing. Sensors, 14(7), 12305-12348. Wiecek, B. (2006). Review on thermal image processing for passive and active thermography. 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. Williams, R. C. (1996). Measurement and effects of segregated hot mix asphalt pavement Purdue University. Zhao, Y., Jiang, J., Dai, Y., Zhou, L., & Ni, F. (2020). Thermal Property Evaluation of Porous Asphalt Concrete Based on Heterogeneous Meso-Structure Finite Element Simulation. Applied Sciences, 10(5), 1671. 公共工程委員會(2020)。瀝青混凝土路面施工及檢驗基準,施工綱要規範,臺北市。 尤瑞哲(2019)。進階測量平差法,臺中市:滄海出版社。 黃三哲、何鴻文、朱建東、陳仙州、洪明澤、呂怡廷、郭鴻騰(2016)。鋪面溫度與瀝青混凝土密度關係之研究,交通部公路總局材料試驗所105年度自行研究計畫成果報告,新北市:交通部公路總局材料試驗所。 黃亞薇(2021)。利用熱紅外影像技術於密級配瀝青混凝土鋪面之空隙率與熱行為分析(碩士論文),國立臺灣大學土木工程學系研究所,臺北市。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84873 | - |
dc.description.abstract | 瀝青鋪面壓實度為路面耐久性重要指標,倘若施工過程壓實效果不佳,長期使用將易致使鋪面開裂、坑洞、車轍等損害,因此,完善的路面查核機制,將降低民眾用路安全疑慮。然而,現行壓實度查核制度採破壞式檢測,將現地取得之鑽芯試樣送至檢驗機構查核,過程相對費時與損耗人力,且僅能於特定範圍內進行單點抽驗,難以確保路面整體壓實品質。對此,本研究將基於紅外線熱像儀具備非破壞性、大範圍檢測之優勢,期盼藉觀測鋪面溫度差異,實施壓實度查核作業,以提升預防性養護之執行效能。據前所述,本研究將採有限元素法探究鋪面熱學行為,首先將建構隨機空隙模型,仿真不同壓實程度之試體,藉數值方法量化材料微觀結構對熱學參數之影響,據以模擬材料升溫行為。此外,本研究採用準蒙地卡羅法(Quasi-Monte Carlo Method),建置溫度反應曲面(Response surface),其基於熱傳模型各項參數現行量測與評定方法,以誤差傳播原理定義參數隨機擾動特性。此分析策略將遵循機率理論,剖析瀝青混凝土材料熱學行為之偶然誤差特性,克服因熱學模型複雜性所導致誤差傳播分析的困難,並可闡釋各項因素影響溫度行為之貢獻程度。接續,將採用靈敏度分析,制定不同承擔風險下之溫度最小可偵測差異指標,以探討紅外線熱像儀對於壓實度差異的可偵測性。本研究所擬方法,經逐步加溫實驗數據論證模型可行性,數值模擬能有效描述空隙材料熱學行為;另外,熱學影響因素重要性排序,可作為未來熱分析優化之依據,能有效降低隨機擾動影響,以縮短溫度顯著差異判定時間;最後,不同信心水準下,判定顯著溫差落於2.4度至3.1度間。綜前述成果顯示,本研究將助益於以紅外線熱像儀執行壓實度查核任務之可行性評估,使未來可實踐非破壞性、大範圍之壓實度檢測,以維護整體路面品質。 | zh_TW |
dc.description.abstract | Compaction is one of the most critical phases in asphalt pavements construction, as it directly affects the performance of pavements. However, quality assurance of compaction is traditionally based on destructive drilled cores results, representing only a part of the pavement. Based on the infrared thermography technique's advantages of non-destructive and large-scale detection. This paper intends to develop a method to determine the quality of asphalt pavement compaction by observing surface temperature. Finite-element (FE) models will be developed to analyze the thermal behavior of asphalt pavement. In addition, to discuss the heating process's uncertainty and analyze influencing factors. This study will determine the random error of thermal parameters based on the evaluation method and error propagation. Then, use the quasi-Monte Carlo method to construct the temperature response surface. Finally, a sensitivity analysis is performed to understand the detectability of porosity and thermal behavior of pavement. These results would contribute to applying the infrared thermography technique to ensure the quality of pavement compaction more efficiently and economically. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:30:10Z (GMT). No. of bitstreams: 1 U0001-2608202217092400.pdf: 4446817 bytes, checksum: 4a17d8a962ed21211da506783a689d69 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 摘要 i Abstract iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 前言 1 1.1 研究背景 1 1.2 研究動機與目的 5 1.3 研究流程 5 1.4 論文架構 6 第二章 文獻回顧 7 2.1 瀝青路面溫度模型 7 2.2 熱傳學模型 8 2.2.1 熱能交換機制 9 2.2.2 熱傳導微分方程 10 2.3 數值分析介紹與實踐 12 2.4 熱分析相關參數測定方法 15 2.4.1 材料熱學參數:瀝青混合料密度測量 15 2.4.2 材料熱學參數:熱傳導係數訂定 16 2.4.3 材料熱學參數:比熱測定 18 2.4.4 邊界條件:環境溫度量測 19 2.4.5 邊界條件:熱對流係數訂定 20 2.4.6 邊界條件:放射率率定 22 2.4.7 邊界條件:外部熱源負載量測 25 2.5 分析流程自動化及多目標優化工具 27 2.6 小結 28 第三章 研究方法 29 3.1 有限元素分析之幾何條件建置 29 3.2 瀝青混合料熱學參數設置 30 3.2.1 瀝青混合料之比熱訂定 31 3.2.1 固相材料之熱傳導係數評估 32 3.3 準蒙地卡羅法:探討熱學行為之機率分布 33 3.4 反應曲面法:表面溫度影響因素分析 34 3.5 靈敏度分析:溫度最小可偵測差異指標 37 3.6 小結 39 第四章 實驗成果與討論 40 4.1 研究資料介紹 40 4.2 以穩態熱傳執行等效熱傳導係數分析成果 43 4.3 暫態熱傳導之分析成果 46 4.4 表面累積升溫之因素分析成果 60 4.5 溫度最小可偵測差異指標分析成果 64 4.6 小結 65 第五章 結論與未來規劃 67 5.1 結論 67 5.2 未來工作建議 68 參考文獻 70 | |
dc.language.iso | zh-TW | |
dc.title | 密級配瀝青混凝土鋪面空隙率與熱行為之可測性分析 | zh_TW |
dc.title | Detectability Analysis of the Thermal Behavior for Dense-Graded Asphalt Concrete Pavement with Different Air Void Contents | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊明德(Ming-Der Yang),蘇育民(Yu-Min Su),洪明澤(Ming-Jer Hong) | |
dc.subject.keyword | 紅外線熱像儀,瀝青混凝土鋪面,空隙率,壓實度,非破壞性檢測, | zh_TW |
dc.subject.keyword | Infrared Thermography,Asphalt pavement,Porosity,Compaction,Non-destructive testing, | en |
dc.relation.page | 75 | |
dc.identifier.doi | 10.6342/NTU202202865 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-08-29 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
dc.date.embargo-lift | 2022-09-26 | - |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2608202217092400.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.34 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。