Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84868
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王昭男(Chao-Nan Wang)
dc.contributor.authorPeng-Kai Chuangen
dc.contributor.author莊芃鍇zh_TW
dc.date.accessioned2023-03-19T22:29:55Z-
dc.date.copyright2022-08-30
dc.date.issued2022
dc.date.submitted2022-08-29
dc.identifier.citationREFERENCE [1] G. Yi, Z. Wu, and M. Sayer, 'Preparation of Pb(Zr,Ti)O3 thin films by sol gel processing: Electrical, optical, and electro‐optic properties,' Journal of Applied Physics, vol. 64, no. 5, pp. 2717-2724, 1988, doi: 10.1063/1.341613. [2] T. Kanda, M. K. Kurosawa, H. Yasui, and T. Higuchi, 'Performance of hydrothermal PZT film on high intensity operation,' Sensors and Actuators A: Physical, vol. 89, no. 1, pp. 16-21, 2001/03/20/ 2001, doi: [3] Y. Jeon, J. Chung, and K. No, 'Fabrication of PZT Thick Films on Silicon Substrates for Piezoelectric Actuator,' Journal of Electroceramics, vol. 4, no. 1, pp. 195-199, 2000/03/01 2000, doi: 10.1023/A:1009924113335. [4] V. Walter, P. Delobelle, P. L. Moal, E. Joseph, and M. Collet, 'A piezo-mechanical characterization of PZT thick films screen-printed on alumina substrate,' Sensors and Actuators A: Physical, vol. 96, no. 2, pp. 157-166, 2002/02/28/ 2002, doi: [5] J. Akedo, 'Aerosol Deposition of Ceramic Thick Films at Room Temperature: Densification Mechanism of Ceramic Layers,' Journal of the American Ceramic Society, vol. 89, no. 6, pp. 1834-1839, 2006, doi: [6] J.-J. Choi, B.-D. Hahn, J. Ryu, W.-H. Yoon, B.-K. Lee, and D.-S. Park, 'Preparation and characterization of piezoelectric ceramic–polymer composite thick films by aerosol deposition for sensor application,' Sensors and Actuators A: Physical, vol. 153, no. 1, pp. 89-95, 2009/06/25/ 2009, doi:. [7] X. Le, Q. Shi, P. Vachon, E. J. Ng, and C. Lee, 'Piezoelectric MEMS—evolution from sensing technology to diversified applications in the 5G/Internet of Things (IoT) era,' Journal of Micromechanics and Microengineering, vol. 32, no. 1, p. 014005, 2021/12/03 2021, doi: 10.1088/1361-6439/ac3ab9. [8] J. Akedo, M. Ichiki, K. Kikuchi, and R. Maeda, 'Jet molding system for realization of three-dimensional micro-structures,' Sensors and Actuators A: Physical, vol. 69, no. 1, pp. 106-112, 1998/06/30/ 1998, doi: [9] B. S. Lee, S. C. Lin, W. J. Wu, X. Y. Wang, P. Z. Chang, and C. K. Lee, 'Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film,' Journal of Micromechanics and Microengineering, vol. 19, no. 6, p. 065014, 2009. [10] S. C. Lin and W. J. Wu, 'Piezoelectric micro energy harvesters based on stainless-steel substrates,' Smart Materials and Structures, vol. 22, no. 4, p. 045016, 2013. [11] T. K. Lin, 'Performance improvement of PZT micro piezoelectric energy harvester fabricated by Aerosol deposition method,' Master's Thesis, Department of Engineering Sciences and Ocean Engineering, National Taiwan University, 2017. [12] Y. H. Yang, 'The Development of Piezoelectric Micromachined Ultrasound Transducer on Stainless-steel Substrate,' Master's Thesis, Department of Engineering Sciences and Ocean Engineering, National Taiwan University, 2019. [13] X. W. Gong, C. T. Chen, W. J. Wu, and W. H. Liao, 'A high sensitivity piezoelectric MEMS accelerometer based on aerosol deposition method,' in Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019, 2019, vol. 10970: International Society for Optics and Photonics, p. 1097026. [14] H.-B. Fang et al., 'Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting,' Microelectronics Journal, vol. 37, no. 11, pp. 1280-1284, 2006. [15] D. Shen et al., 'Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting,' Sensors and actuators A: physical, vol. 154, no. 1, pp. 103-108, 2009. [16] E. E. Aktakka, R. L. Peterson, and K. Najafi, 'A CMOS-compatible piezoelectric vibration energy scavenger based on the integration of bulk PZT films on silicon,' in 2010 International Electron Devices Meeting, 2010: IEEE, pp. 31.5. 1-31.5. 4. [17] M. Hara, T. Yokoyama, T. Nishihara, M. Ueda, and H. Kuwano, 'Highly piezoelectric MgZr co-doped aluminum nitride-based vibrational energy harvesters,' IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 62, no. 11, pp. 2005-2008, 2015. [18] G. Tang et al., 'A piezoelectric micro generator worked at low frequency and high acceleration based on PZT and phosphor bronze bonding,' Scientific reports, vol. 6, p. 38798, 2016. [19] 郭昱均, '高效率壓電厚膜氣膠沉積製程設備之開發,' 工程科學及海洋工程學研究所, 國立臺灣大學, 2021年, 2021. [20] P. Curie and J. Curie, 'Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées,' Bulletin de Minéralogie, pp. 90-93, 1880. [21] E. Sawaguchi, 'Ferroelectricity versus Antiferroelectricity in the Solid Solutions of PbZrO3 and PbTiO3,' Journal of the Physical Society of Japan, vol. 8, pp. 615-629, 1953. [22] T. Hehn and Y. Manoli, 'Introduction,' in CMOS Circuits for Piezoelectric Energy Harvesters: Efficient Power Extraction, Interface Modeling and Loss Analysis, T. Hehn and Y. Manoli Eds. Dordrecht: Springer Netherlands, 2015, pp. 1-20. [23] S. Priya, J. Ryu, C.-S. Park, J. Oliver, J.-J. Choi, and D.-S. Park, 'Piezoelectric and Magnetoelectric Thick Films for Fabricating Power Sources in Wireless Sensor Nodes,' Sensors, vol. 9, no. 8, pp. 6362-6384, 2009. [24] B. Leclerc, 'Process optimization for sol-gel PZT films,' MSc Thesis, Queen’s University, Canada, 1999. Google Scholar, 1999. [25] S. Berg and T. Nyberg, 'Fundamental understanding and modeling of reactive sputtering processes,' Thin Solid Films, vol. 476, no. 2, pp. 215-230, 2005/04/08/ 2005. [26] D. Nakahira, T. Kanda, K. Suzumori, M. Kabuto, Y. Michihiro, and M. Ueno, 'Hydrothermal deposition of the PZT film and applications of piezoelectric actuators,' in 2012 19th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 28-30 Nov. 2012 2012, pp. 501-506. [27] A. A. Tomchenko, 'Printed Chemical Sensors: From Screen-Printing to Microprinting∗,' Encycl. Sens, vol. 10, pp. 279-290, 2006. [28] J. Akedo, 'Room Temperature Impact Consolidation (RTIC) of Fine Ceramic Powder by Aerosol Deposition Method and Applications to Microdevices,' Journal of Thermal Spray Technology, vol. 17, no. 2, pp. 181-198, 2008/06/01 2008, doi: 10.1007/s11666-008-9163-7. [29] S.-C. Lin and W.-J. Wu, 'Fabrication of PZT MEMS energy harvester based on silicon and stainless-steel substrates utilizing an aerosol deposition method,' Journal of Micromechanics and Microengineering, vol. 23, no. 12, p. 125028, 2013. [30] 林莛凱, '提升氣膠沉積法製作之鋯鈦酸鉛(PZT)微型壓電能量擷取器元件效能之研究與實作,' 工程科學及海洋工程學研究所, 國立臺灣大學, 2017年, 2017. [31] D. Kunii, O. Levenspiel, and H. Brenner, Fluidization Engineering. Elsevier Science, 1991. [32] D. Geldart, 'Types of gas fluidization,' Powder Technology, vol. 7, no. 5, pp. 285-292, 1973/05/01/ 1973. [33] 郭修伯 and 黃安婗, '你是風兒我是沙──流體化床,' 科學發展月刊, pp. 10-15, 2015.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84868-
dc.description.abstract壓電氣膠沉積製程作為微機電(MEMS)壓電元件製作重要的一環,改良其製程設備以獲得更佳的成膜品質及製程效率,可為壓電材料的應用帶來更多的自由度與可能性。本研究中提出一個新的氣膠產生系統,包含混合室及補粉器,新設計之混合室得以提高固氣混合之效率及品質;補粉器以穩定且連續的固定速率對混合室補充鋯鈦酸鉛(PZT)粉末,以維持氣膠產生之效率且免去舊製程中停機補粉之步驟,實現更高的連續噴塗時長,有效節省不少時間,提高單位時間的產率。 使用本研究所提出之氣膠產生系統所製備出厚度約10 μm的壓電厚膜,經鐵電分析量測獲得,在300 Vpp的三角波條件下具備殘餘極化量為15.14 μC/cm2、矯頑電場為2.68 MV/m,相較舊系統擁有較高的飽和極化量、殘餘極化量,較小的矯頑電場,介電損耗由11 %降至7.7 ¬%。由量測數據顯示改良後的製程設備所製備出之壓電膜擁有較優異之壓電特性。zh_TW
dc.description.abstractPiezoelectric aerosol deposition (AD) plays a significant role in manufacturing piezoelectric micro-electromechanical systems (MEMS). To make piezoelectric materials more flexible in different applications, we refine the current AD apparatus to achieve higher efficiency and better film quality. We propose a new aerosol generation system composed of a self-designed mixing chamber and an innovative powder feeder. This mixing chamber boosts not only the quality but also the efficiency of powder fluidization. Our uninterrupted powder feeder reaches a longer spray time and prevents the drop in efficiency during aerosol generation. Since this novel powder feeder can refill the lead zirconate titanate (PZT) powder automatically. The system can eliminate the interruption of re-packing powder compared to previous procedures. The 10μm PZT thick film, produced by our aerosol generation system, attains 15.14 μC/cm2 in remnant polarization (Pr) and 2.68 MV/m in coercive electric (Ec) field through the ferroelectric analysis under the condition of 300 Vpp triangular wave. The products of the proposed system lead to greater values in saturated polarization (Ps) and remnant polarization (Pr) than those of the former designs. Besides, the products have relatively small values in coercive electric (Ec) field. Furthermore, we reduce the dielectric loss of the thick film from 11% to 7.7%. With the experimental data, our proposed aerosol generation system produces piezoelectric films with better piezoelectric properties.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:29:55Z (GMT). No. of bitstreams: 1
U0001-2508202216562000.pdf: 6970204 bytes, checksum: 08f2ed547ed0cb2b177b699fefaf5353 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 # 誌謝 i 摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 x 第1章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 研究目標 5 1.4 論文架構 6 第2章 壓電原理及製程技術 7 2.1 壓電效應 7 2.1.1 正壓電效應 7 2.1.2 逆壓電效應 8 2.2 壓電材料 9 2.2.1 鋯鈦酸鉛(PZT) 10 2.3 製程技術 11 2.3.1 溶膠凝膠法(Sol-gel Method) 11 2.3.2 濺鍍法(Sputtering method) 12 2.3.3 水熱合成法(Hydrothermal Method) 12 2.3.4 網版印刷法(Screen printing) 13 2.3.5 氣膠沉積法(Aerosol Deposition Method) 14 2.3.6 製程比較 15 第3章 原始設備之簡介 16 3.1 團隊設備介紹 16 3.1.1 沉積室 17 3.1.2 氣膠產生系統 17 3.1.3 控制系統 18 3.2 氣膠產生系統之原理及分析 19 第4章 氣膠產生系統設計與分析 21 4.1 粉粒體介紹與流體化床之應用 21 4.2 混合室 24 4.2.1 流體化床 24 4.2.2 集粉管 24 4.2.3 氣密設計 28 4.3 震動補粉器 29 4.4 系統整合 31 4.5 製程順序 33 4.6 厚膜分析方法 36 4.6.1 雷射掃描共軛焦顯微鏡 36 4.6.2 掃描式電子顯微鏡 36 4.6.3 鐵電分析儀 37 第5章 實驗結果與討論 38 5.1 氣膠產生系統設計之探討 38 5.1.1 混合室 38 5.1.2 震動補粉器 40 5.2 壓電膜分析 41 5.2.1 表面分析 41 5.2.2 剖面分析 44 5.2.3 鐵電性分析 45 5.3 新舊系統差異之探討 47 第6章 結論與未來展望 50 6.1 結論 50 6.2 未來展望 50 REFERENCE 51
dc.language.isozh-TW
dc.title壓電厚膜氣膠沉積製程設備之連續噴塗系統開發zh_TW
dc.titleDevelopment of Continuous Spraying System for Piezoelectric Thick Film Aerosol Deposition Apparatusen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.coadvisor吳文中(Wen-Jong Wu)
dc.contributor.oralexamcommittee謝宗霖(Shieh Tzong-Lin),田維誠(Wei-Cheng Tian)
dc.subject.keyword氣膠沉積法,鋯鈦酸鉛,壓電厚膜,氣膠產生系統,流體化床,震動給料機,白努力定律,zh_TW
dc.subject.keywordaerosol deposition method,piezoelectric thick film,PZT,aerosol generator,fluidized bed,vibration feeder,Bernoulli's principle,en
dc.relation.page53
dc.identifier.doi10.6342/NTU202202817
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
dc.date.embargo-lift2022-08-30-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
U0001-2508202216562000.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
6.81 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved