Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84865
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 何藴芳(Yunn-Fang Ho) | |
dc.contributor.author | Yu-Ting Huang | en |
dc.contributor.author | 黃毓婷 | zh_TW |
dc.date.accessioned | 2023-03-19T22:29:45Z | - |
dc.date.copyright | 2022-10-05 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-25 | |
dc.identifier.citation | Aarons, L. (2005). Physiologically based pharmacokinetic modelling: a sound mechanistic basis is needed. Br J Clin Pharmacol, 60(6), 581-583. https://doi.org/10.1111/j.1365-2125.2005.02560.x Abbott, F. S. & Anari M.R. (1999). Chemistry and biotransformation. In: W. Löscher (Ed). Milestones in Drug Therapy-Valproate(pp. 47-75). Basel, Birkhäuser Verlag. Addison, R. S., Parker-Scott, S. L., Eadie, M. J., Hooper, W. D., & Dickinson, R. G. (2000). Steady-state dispositions of valproate and diflunisal alone and coadministered to healthy volunteers. Eur J Clin Pharmacol, 56(9-10), 715-721. https://doi.org/10.1007/s002280000211 Allegaert, K., & van den Anker, J. (2019). Ontogeny of Phase I Metabolism of Drugs. J Clin Pharmacol, 59 Suppl 1, S33-S41. https://doi.org/10.1002/jcph.1483 Andrade, R. J., Chalasani, N., Bjornsson, E. S., Suzuki, A., Kullak-Ublick, G. A., Watkins, P. B., Devarbhavi, H., Merz, M., Lucena, M. I., Kaplowitz, N., & Aithal, G. P. (2019). Drug-induced liver injury. Nat Rev Dis Primers, 5(1), 58. https://doi.org/10.1038/s41572-019-0105-0 Argikar, U. A., & Remmel, R. P. (2009). Effect of aging on glucuronidation of valproic acid in human liver microsomes and the role of UDP-glucuronosyltransferase UGT1A4, UGT1A8, and UGT1A10. Drug Metab Dispos, 37(1), 229-236. https://doi.org/10.1124/dmd.108.022426 Avant, D., Baer, G., Moore, J., Zheng, P., Sorbello, A., Ariagno, R., Yao, L., Burckart, G. J., & Wang, J. (2017). Neonatal Safety Information Reported to the FDA During Drug Development Studies. Ther Innov Regul Sci, 2017, 1-9. https://doi.org/10.1177/2168479017716713 Badee, J., Qiu, N., Collier, A. C., Takahashi, R. H., Forrest, W. F., Parrott, N., Schmidt, S., & Fowler, S. (2019). Characterization of the Ontogeny of Hepatic UDP-Glucuronosyltransferase Enzymes Based on Glucuronidation Activity Measured in Human Liver Microsomes. J Clin Pharmacol, 59 Suppl 1, S42-S55. https://doi.org/10.1002/jcph.1493 Begriche, K., Massart, J., Robin, M. A., Borgne-Sanchez, A., & Fromenty, B. (2011). Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol, 54(4), 773-794. https://doi.org/10.1016/j.jhep.2010.11.006 Bhatt, D. K., Mehrotra, A., Gaedigk, A., Chapa, R., Basit, A., Zhang, H., Choudhari, P., Boberg, M., Pearce, R. E., Gaedigk, R., Broeckel, U., Leeder, J. S., & Prasad, B. (2019). Age- and Genotype-Dependent Variability in the Protein Abundance and Activity of Six Major Uridine Diphosphate-Glucuronosyltransferases in Human Liver. Clin Pharmacol Ther, 105(1), 131-141. https://doi.org/10.1002/cpt.1109 Bialer, M., Hussein, Z., Raz, I., Abramsky, O., Herishanu, Y., & Pachys, F. (1985). Pharmacokinetics of valproic acid in volunteers after a single dose study. Biopharm Drug Dispos, 6(1), 33-42. https://doi.org/10.1002/bdd.2510060105 Bondareva, I. B., Jelliffe, R. W., Sokolov, A. V., & Tischenkova, I. F. (2004). Nonparametric population modeling of valproate pharmacokinetics in epileptic patients using routine serum monitoring data: implications for dosage. J Clin Pharm Ther, 29(2), 105-120. https://doi.org/10.1111/j.1365-2710.2003.00538.x Bryson, S. M., Verma, N., Scott, P. J., & Rubin, P. C. (1983). Pharmacokinetics of valproic acid in young and elderly subjects. Br J Clin Pharmacol, 16(1), 104-105. https://doi.org/10.1111/j.1365-2125.1983.tb02151.x Chalasani, N., & Bjornsson, E. (2010). Risk factors for idiosyncratic drug-induced liver injury. Gastroenterology, 138(7), 2246-2259. https://doi.org/10.1053/j.gastro.2010.04.001 Chang, T. K., & Abbott, F. S. (2006). Oxidative stress as a mechanism of valproic acid-associated hepatotoxicity. Drug Metab Rev, 38(4), 627-639. https://doi.org/10.1080/03602530600959433 Chatzistefanidis, D., Lazaros, L., Giaka, K., Nakou, I., Tzoufi, M., Georgiou, I., Kyritsis, A., & Markoula, S. (2016). UGT1A6- and UGT2B7-related valproic acid pharmacogenomics according to age groups and total drug concentration levels. Pharmacogenomics, 17(8), 827-835. https://doi.org/10.2217/pgs-2016-0014 Cheng, H., Liu, Z., Blum, W., Byrd, J. C., Klisovic, R., Grever, M. R., Marcucci, G., & Chan, K. K. (2007). Quantification of valproic acid and its metabolite 2-propyl-4-pentenoic acid in human plasma using HPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci, 850(1-2), 206-212. https://doi.org/10.1016/j.jchromb.2006.11.027 Chiba, K., Suganuma, T., Ishizaki, T., Iriki, T., Shirai, Y., Naitoh, H., & Hori, M. (1985). Comparison of Steady-State Pharmacokinetics of Valproic Acid in Children between Monotherapy and Multiple Antiepileptic Drug-Treatment. Journal of Pediatrics, 106(4), 653-658. https://doi.org/Doi 10.1016/S0022-3476(85)80097-4 Chun, A. H., Hoffman, D. J., Friedmann, N., & J., C. P. (1980). Bioavailability of valproic acid under fasting/nonfasting regimens. J Clin Pharmacol, 20(1), 30-36. Cloyd, J. C., Dutta, S., Cao, G., Walch, J. K., Collins, S. D., Granneman, G. R., & Depacon Study, G. (2003). Valproate unbound fraction and distribution volume following rapid infusions in patients with epilepsy. Epilepsy Res, 53(1-2), 19-27. https://doi.org/10.1016/s0920-1211(02)00251-6 Conner, T. M., Nikolian, V. C., Georgoff, P. E., Pai, M. P., Alam, H. B., Sun, D., Reed, R. C., & Zhang, T. (2018). Physiologically based pharmacokinetic modeling of disposition and drug-drug interactions for valproic acid and divalproex. Eur J Pharm Sci, 111, 465-481. https://doi.org/10.1016/j.ejps.2017.10.009 Crawford, J. D., Terry, M. E., & Rourke, G. M. (1950). Simplification of drug dosage calculation by application of the surface area principle. Pediatrics, 5(5), 783-790. https://www.ncbi.nlm.nih.gov/pubmed/15417279 Dreifuss, F. E., Santilli, N., Langer, D. H., Sweeney, K. P., Moline, K. A., & Menander, K. B. (1987). Valproic acid hepatic fatalities: a retrospective review. Neurology, 37(3), 379-385. https://doi.org/10.1212/wnl.37.3.379 Dutta, S., & Reed, R. C. (2007). Distinct absorption characteristics of oral formulations of valproic acid/divalproex available in the United States. Epilepsy Res, 73(3), 275-283. https://doi.org/10.1016/j.eplepsyres.2006.11.005 Ezuruike, U., Zhang, M., Pansari, A., De Sousa Mendes, M., Pan, X., Neuhoff, S., & Gardner, I. (2022). Guide to development of compound files for PBPK modeling in the Simcyp population-based simulator. CPT Pharmacometrics Syst Pharmacol, 11(7), 805-821. https://doi.org/10.1002/psp4.12791 Gelisse, P., Genton, P., & Crespel, A. (2016). Is there a difference between various presentations of valproate for cognitive outcome after in utero exposure? Epilepsia, 57(3), 523-524. https://doi.org/10.1111/epi.13301 Gerussi, A., Natalini, A., Antonangeli, F., Mancuso, C., Agostinetto, E., Barisani, D., Di Rosa, F., Andrade, R., & Invernizzi, P. (2021). Immune-Mediated Drug-Induced Liver Injury: Immunogenetics and Experimental Models. Int J Mol Sci, 22(9). https://doi.org/10.3390/ijms22094557 Ghodke-Puranik, Y., Thorn, C. F., Lamba, J. K., Leeder, J. S., Song, W., Birnbaum, A. K., Altman, R. B., & Klein, T. E. (2013). Valproic acid pathway: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics, 23(4), 236-241. https://doi.org/10.1097/FPC.0b013e32835ea0b2 Glazko, A. J., Chang, T., Daftsios, A. C., Eiseman, I., Smith, T. C., & Buchanan, R. A. (1983). Bioavailability of Calcium Valproate in Normal Men Compared with the Free Acid and Sodium-Salt. Therapeutic Drug Monitoring, 5(4), 409-417. https://doi.org/Doi 10.1097/00007691-198312000-00006 Gomez-Lechon, M. J., Tolosa, L., & Donato, M. T. (2017). Upgrading HepG2 cells with adenoviral vectors that encode drug-metabolizing enzymes: application for drug hepatotoxicity testing. Expert Opinion on Drug Metabolism & Toxicology, 13(2), 137-148. <Go to ISI>://WOS:000392646800003 Grijalva, J., & Vakili, K. (2013). Neonatal liver physiology. Semin Pediatr Surg, 22(4), 185-189. https://doi.org/10.1053/j.sempedsurg.2013.10.006 Grunig, D., Szabo, L., Marbet, M., & Krahenbuhl, S. (2020). Valproic acid affects fatty acid and triglyceride metabolism in HepaRG cells exposed to fatty acids by different mechanisms. Biochem Pharmacol, 177, 113860. https://doi.org/10.1016/j.bcp.2020.113860 Gugler, R., Schell, A., Eichelbaum, M., Froscher, W., & Schulz, H. U. (1977). Disposition of valproic acid in man. Eur J Clin Pharmacol, 12(2), 125-132. https://doi.org/10.1007/BF00645133 Gugler, R., & von Unruh, G. E. (1980). Clinical pharmacokinetics of valproic acid. Clin Pharmacokinet, 5(1), 67-83. https://doi.org/10.2165/00003088-198005010-00002 Guo, L., Dial, S., Shi, L. M., Branham, W., Liu, J., Fang, J. L., Green, B., Deng, H., Kaput, J., & Ning, B. T. (2011). Similarities and Differences in the Expression of Drug-Metabolizing Enzymes between Human Hepatic Cell Lines and Primary Human Hepatocytes. DRUG METABOLISM AND DISPOSITION, 39(3), 528-538. <Go to ISI>://WOS:000287443600021 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3061558/pdf/zdd528.pdf Hall, K., Otten, N., Johnston, B., Irvine-Meek, J., Leroux, M., & Seshia, S. (1985). A multivariable analysis of factors governing the steady-state pharmacokinetics of valproic acid in 52 young epileptics. J Clin Pharmacol, 25(4), 261-268. https://doi.org/10.1002/j.1552-4604.1985.tb02836.x Hoofnagle, J. H., & Bjornsson, E. S. (2019). Drug-Induced Liver Injury - Types and Phenotypes. N Engl J Med, 381(3), 264-273. https://doi.org/10.1056/NEJMra1816149 Ibarra, M., Vazquez, M., Fagiolino, P., & Derendorf, H. (2013). Sex related differences on valproic acid pharmacokinetics after oral single dose. J Pharmacokinet Pharmacodyn, 40(4), 479-486. https://doi.org/10.1007/s10928-013-9323-3 Ipsen, D. H., Lykkesfeldt, J., & Tveden-Nyborg, P. (2018). Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci, 75(18), 3313-3327. https://doi.org/10.1007/s00018-018-2860-6 Johannessen, C. U., & Johannessen, S. I. (2003). Valproate: past, present, and future. CNS Drug Rev, 9(2), 199-216. https://doi.org/10.1111/j.1527-3458.2003.tb00249.x Johnson, T. N., & Ke, A. B. (2021). Physiologically Based Pharmacokinetic Modeling and Allometric Scaling in Pediatric Drug Development: Where Do We Draw the Line? J Clin Pharmacol, 61 Suppl 1, S83-S93. https://doi.org/10.1002/jcph.1834 Jones, H., & Rowland-Yeo, K. (2013). Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacometrics Syst Pharmacol, 2, e63. https://doi.org/10.1038/psp.2013.41 Jones, H. M., Parrott, N., Jorga, K., & Lave, T. (2006). A novel strategy for physiologically based predictions of human pharmacokinetics. Clin Pharmacokinet, 45(5), 511-542. https://doi.org/10.2165/00003088-200645050-00006 Jusko, W. J. (2006). Guidelines for Collection and Analysis of Pharmacokinetic Data. In M. E. Burton, L. M. Shaw, J. J. Schentag, & W. E. Evans (Eds.), Applied Pharmacokinetics & Pharmacodynamics (pp. 8-29). Philadelphia, Lippincott Williams & Wilkins. Kearns, G. L., Abdel-Rahman, S. M., Alander, S. W., Blowey, D. L., Leeder, J. S., & Kauffman, R. E. (2003). Developmental Pharmacology — Drug Disposition, Action, and Therapy in Infants and Children. N Engl J Med 349, 1157-1167. Khalil, F., & Laer, S. (2011). Physiologically based pharmacokinetic modeling: methodology, applications, and limitations with a focus on its role in pediatric drug development. J Biomed Biotechnol, 2011, 907461. https://doi.org/10.1155/2011/907461 Kiang, T. K., Ho, P. C., Anari, M. R., Tong, V., Abbott, F. S., & Chang, T. K. (2006). Contribution of CYP2C9, CYP2A6, and CYP2B6 to valproic acid metabolism in hepatic microsomes from individuals with the CYP2C9*1/*1 genotype. Toxicol Sci, 94(2), 261-271. https://doi.org/10.1093/toxsci/kfl096 Kim, C., Park, K., McMahon, A. W., Green, F. G., Green, D. J., & Burckart, G. J. (2021). Drug Safety in Labeling for Pediatric Drug Development and Dose Selection in Submissions to the US Food and Drug Administration. J Clin Pharmacol, 61 Suppl 1, S133-S140. https://doi.org/10.1002/jcph.1864 Klotz, U., & Antonin, K. H. (1977). Pharmacokinetics and bioavailability of sodium valproate. Clin Pharmacol Ther, 21(6), 736-743. Kondo, T., Kaneko, S., Otani, K., Ishida, M., Hirano, T., Fukushima, Y., Muranaka, H., Koide, N., & Yokoyama, M. (1992). Associations between Risk-Factors for Valproate Hepatotoxicity and Altered Valproate Metabolism. Epilepsia, 33(1), 172-177. https://doi.org/DOI 10.1111/j.1528-1157.1992.tb02302.x Kuepfer, L., Niederalt, C., Wendl, T., Schlender, J. F., Willmann, S., Lippert, J., Block, M., Eissing, T., & Teutonico, D. (2016). Applied Concepts in PBPK Modeling: How to Build a PBPK/PD Model. CPT Pharmacometrics Syst Pharmacol, 5(10), 516-531. https://doi.org/10.1002/psp4.12134 Löscher, W. (1978). Serum protein binding and pharmacokinetics of valproate in man, dog, rat and mouse. J Pharmacol Exp Ther, 204(2), 255-261. Lack, J. A., & Stuart-Taylor, M. E. (1997). Calculation of drug dosage and body surface area of children. Br J Anaesth, 78(5), 601-605. https://doi.org/10.1093/bja/78.5.601 Lee, S. Y., Huh, W., Jung, J. A., Yoo, H. M., Ko, J. W., & Kim, J. R. (2015). Effects of amoxicillin/clavulanic acid on the pharmacokinetics of valproic acid. Drug Des Devel Ther, 9, 4559-4563. https://doi.org/10.2147/DDDT.S89464 Lee, W. M. (2003). Drug-induced hepatotoxicity. N Engl J Med, 349(5), 474-485. https://doi.org/10.1056/NEJMra021844 Levy, R. H., Rettenmeier, A. W., Anderson, G. D., Wilensky, A. J., Friel, P. N., Baillie, T. A., Acheampong, A., Tor, J., Guyot, M., & Loiseau, P. (1990). Effects of polytherapy with phenytoin, carbamazepine, and stiripentol on formation of 4-ene-valproate, a hepatotoxic metabolite of valproic acid. Clin Pharmacol Ther, 48(3), 225-235. Lipska, K., Gumieniczek, A., & Filip, A. A. (2020). Anticonvulsant valproic acid and other short-chain fatty acids as novel anticancer therapeutics: Possibilities and challenges. Acta Pharm, 70(3), 291-301. https://doi.org/10.2478/acph-2020-0021 Luef, G. J., Waldmann, M., Sturm, W., Naser, A., Trinka, E., Unterberger, I., Bauer, G., & Lechleitner, M. (2004). Valproate therapy and nonalcoholic fatty liver disease. Ann Neurol, 55(5), 729-732. https://doi.org/10.1002/ana.20074 Ma, L., Wang, Y., Chen, X., Zhao, L., & Guo, Y. (2020). Involvement of CYP2E1-ROS-CD36/DGAT2 axis in the pathogenesis of VPA-induced hepatic steatosis in vivo and in vitro. Toxicology, 445, 152585. https://doi.org/10.1016/j.tox.2020.152585 Michelet, R., Bocxlaer, J. V., & Vermeulen, A. (2017). PBPK in Preterm and Term Neonates: A Review. Curr Pharm Des, 23(38), 5943-5954. https://doi.org/10.2174/1381612823666171009143840 Michoulas, A., Tong, V., Teng, X. W., Chang, T. K., Abbott, F. S., & Farrell, K. (2006). Oxidative stress in children receiving valproic acid. J Pediatr, 149(5), 692-696. https://doi.org/10.1016/j.jpeds.2006.08.015 Neuman, M. G., Shear, N. H., Jacobson-Brown, P. M., Katz, G. G., Neilson, H. K., Malkiewicz, I. M., Cameron, R. G., & Abbott, F. (2001). CYP2E1-mediated modulation of valproic acid-induced hepatocytotoxicity. Clinical Biochemistry, 34, 211-218. Neuvonen, P. J., Kannisto, H., & Hirvisalo, E. L. (1983). Effect of activated charcoal on absorption of tolbutamide and valproate in man. Eur J Clin Pharmacol, 24(2), 243-246. https://doi.org/10.1007/BF00613825 Nitsche, V., & Mascher, H. (1982). The pharmacokinetics of valproic acid after oral and parenteral administration in healthy volunteers. Epilepsia, 23(2), 153-162. Perucca, E., Gatti, G., Frigo, G. M., & Crema, A. (1978). Pharmacokinetics of valproic acid after oral and intravenous administration. Br J Clin Pharmacol, 5(4), 313-318. Pokrajac, M., Miljković, B., Varagić, V. M., & Lević, Z. (1993). Pharmacokinetic interaction between valproic acid and phenobarbital. Biopharm Drug Dispos, 14(1), 81-86. Rashid, M., Sarfraz, M., Arafat, M., Hussain, A., Abbas, N., Sadiq, M. W., Rasool, M. F., & Bukhari, N. I. (2020). Prediction of lisinopril pediatric dose from the reference adult dose by employing a physiologically based pharmacokinetic model. BMC Pharmacol Toxicol, 21(1), 56. https://doi.org/10.1186/s40360-020-00429-y Rodgers, T., & Rowland, M. (2006). Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci, 95(6), 1238-1257. https://doi.org/10.1002/jps.20502 Rosenberg, G. (2007). The mechanisms of action of valproate in neuropsychiatric disorders: can we see the forest for the trees? Cell Mol Life Sci, 64(16), 2090-2103. https://doi.org/10.1007/s00018-007-7079-x Sadeque A. J. M., Fisher M. B., Korzekwa K. R., Gonzalez F. J., Rettie, A. E. (1997). Human CYP2C9 and CYP2A6 mediate formation of the hepatotoxin 4-ene-valproic acid. J Pharmacol Exp Ther, 283, 698-703. Sadler, N. C., Nandhikonda, P., Webb-Robertson, B. J., Ansong, C., Anderson, L. N., Smith, J. N., Corley, R. A., & Wright, A. T. (2016). Hepatic Cytochrome P450 Activity, Abundance, and Expression Throughout Human Development. Drug Metab Dispos, 44(7), 984-991. https://doi.org/10.1124/dmd.115.068593 Sakaguchi, K., Green, M., Stock, N., Reger, T. S., Zunic, J., & King, C. (2004). Glucuronidation of carboxylic acid containing compounds by UDP-glucuronosyltransferase isoforms. Arch Biochem Biophys, 424(2), 219-225. https://doi.org/10.1016/j.abb.2004.02.004 Silva, M. F., Aires, C. C., Luis, P. B., Ruiter, J. P., L, I. J., Duran, M., Wanders, R. J., & Tavares de Almeida, I. (2008). Valproic acid metabolism and its effects on mitochondrial fatty acid oxidation: a review. J Inherit Metab Dis, 31(2), 205-216. https://doi.org/10.1007/s10545-008-0841-x Singh, K., Orr, J. M., & Abbott, F. S. (1990). Pharmacokinetics and enterohepatic circulation of (E)-2-ene valproic acid in the rat. J Pharmacobiodyn, 13(10), 622-627. https://doi.org/10.1248/bpb1978.13.622 Sobol, I. M. (1993). Sensitivity estimates for nonlinear methematical models. Math Modelling Comput Exp. 4, 407-414. Star, K., Edwards, I. R., & Choonara, I. (2014). Valproic acid and fatalities in children: a review of individual case safety reports in VigiBase. PLoS One, 9(10), e108970. https://doi.org/10.1371/journal.pone.0108970 Stingl, J. C., Bartels, H., Viviani, R., Lehmann, M. L., & Brockmoller, J. (2014). Relevance of UDP-glucuronosyltransferase polymorphisms for drug dosing: A quantitative systematic review. Pharmacol Ther, 141(1), 92-116. https://doi.org/10.1016/j.pharmthera.2013.09.002 Tan, L., Yu, J. T., Sun, Y. P., Ou, J. R., Song, J. H., & Yu, Y. (2010). The influence of cytochrome oxidase CYP2A6, CYP2B6, and CYP2C9 polymorphisms on the plasma concentrations of valproic acid in epileptic patients. Clinical Neurology and Neurosurgery, 112(4), 320-323. https://doi.org/10.1016/j.clineuro.2010.01.002 Tang, W., & Abbott, F. S. (1997). A comparative investigation of 2-propyl-4-pentenoic acid (4-ene VPA) and its alpha-fluorinated analogue: phase II metabolism and pharmacokinetics. Drug Metab Dispos, 25(2), 219-227. https://www.ncbi.nlm.nih.gov/pubmed/9029053 Teorell, T. (1937). Kinetics of distribution of substances administered to the body I The extravascular modes of administration. Archives Internationales De Pharmacodynamie Et De Therapie, 57, 205-225. <Go to ISI>://WOS:000201956400018 Tong, V., Teng, X. W., Chang, T. K., & Abbott, F. S. (2005). Valproic acid II: effects on oxidative stress, mitochondrial membrane potential, and cytotoxicity in glutathione-depleted rat hepatocytes. Toxicol Sci, 86(2), 436-443. https://doi.org/10.1093/toxsci/kfi185 Upreti, V. V., & Wahlstrom, J. L. (2016). Meta-analysis of hepatic cytochrome P450 ontogeny to underwrite the prediction of pediatric pharmacokinetics using physiologically based pharmacokinetic modeling. J Clin Pharmacol, 56(3), 266-283. https://doi.org/10.1002/jcph.585 van den Anker, J., Reed, M. D., Allegaert, K., & Kearns, G. L. (2018). Developmental Changes in Pharmacokinetics and Pharmacodynamics. J Clin Pharmacol, 58 Suppl 10, S10-S25. https://doi.org/10.1002/jcph.1284 Visudtibhan, A., Bhudhisawadi, K., Vaewpanich, J., Chulavatnatol, S., & Kaojareon, S. (2011). Pharmacokinetics and clinical application of intravenous valproate in Thai epileptic children. Brain Dev, 33(3), 189-194. https://doi.org/10.1016/j.braindev.2010.04.003 Wang, K., Jiang, K., Wei, X., Li, Y., Wang, T., & Song, Y. (2021). Physiologically Based Pharmacokinetic Models Are Effective Support for Pediatric Drug Development. AAPS PharmSciTech, 22(6), 208. https://doi.org/10.1208/s12249-021-02076-w Williams, J. H., Jayaraman, B., Swoboda, K. J., & Barrett, J. S. (2012). Population pharmacokinetics of valproic acid in pediatric patients with epilepsy: considerations for dosing spinal muscular atrophy patients. J Clin Pharmacol, 52(11), 1676-1688. https://doi.org/10.1177/0091270011428138 Yellepeddi, V., Rower, J., Liu, X., Kumar, S., Rashid, J., & Sherwin, C. M. T. (2019). State-of-the-Art Review on Physiologically Based Pharmacokinetic Modeling in Pediatric Drug Development. Clin Pharmacokinet, 58(1), 1-13. https://doi.org/10.1007/s40262-018-0677-y Zaccara, G., Messori, A., & Moroni, F. (1988). Clinical pharmacokinetics of valproic acid--1988. Clin Pharmacokinet, 15(6), 367-389. https://doi.org/10.2165/00003088-198815060-00002 Zhang, Y. J., Zhang, M., Wang, X. C., Yu, Y. H., Jin, P. J., & Wang, Y. (2011). [Effects of sodium valproate on neutrophils' oxidative metabolism and oxidant status in children with idiopathic epilepsy]. Zhonghua Er Ke Za Zhi, 49(10), 776-781. https://www.ncbi.nlm.nih.gov/pubmed/22321186 Zhao, P., Zhang, L., Grillo, J. A., Liu, Q., Bullock, J. M., Moon, Y. J., Song, P., Brar, S. S., Madabushi, R., Wu, T. C., Booth, B. P., Rahman, N. A., Reynolds, K. S., Gil Berglund, E., Lesko, L. J., & Huang, S. M. (2011). Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clin Pharmacol Ther, 89(2), 259-267. https://doi.org/10.1038/clpt.2010.298 Zhou, W., Johnson, T. N., Bui, K. H., Cheung, S. Y. A., Li, J., Xu, H., Al-Huniti, N., & Zhou, D. (2018). Predictive Performance of Physiologically Based Pharmacokinetic (PBPK) Modeling of Drugs Extensively Metabolized by Major Cytochrome P450s in Children. Clin Pharmacol Ther, 104(1), 188-200. https://doi.org/10.1002/cpt.905 Zhuang, X., & Lu, C. (2016). PBPK modeling and simulation in drug research and development. Acta Pharm Sin B, 6(5), 430-440. https://doi.org/10.1016/j.apsb.2016.04.004 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84865 | - |
dc.description.abstract | 背景:Valproic acid (簡稱VPA)是兒童和成人常用的抗癲癇藥物,藥品動態學(pharmacokinetics,PKs)特性複雜。VPA相關肝毒性明列於仿單開頭之「Boxed Warning」,而在新生兒與嬰兒年齡次群(小於一歲)之發生率又高於成人。本研究旨在探討在個體發育過程中,藥物代謝酵素表現之變化於VPA肝毒性發生之角色,藉以解釋VPA相關肝毒性於兒童較易見之現象。 方法:本研究以肝癌HepG2細胞株為實驗模型,將之轉染與VPA代謝相關之酵素cytochrome P450 (CYP) 同功異構酶2C9與2E1,及UDP-glucuronosyltransferase (UGT)2B7,藉以建構細胞研究模式,嘗試探究兒童和成人之VPA代謝途徑可能差異。本研究另分別整理或優化VPA 與其代謝物4-ene-VPA的in vitro、in silico及in vivo各參數值,建構適用於成人和兒童之以生理為基礎的藥品動態學(physiologically based pharmacokinetics,簡稱PBPK)化合物資料,亦彙整VPA臨床藥動學研究文獻,運用Simcyp軟體進行PBPK探討。後續並透過敏感性分析,以靈敏度指標評估CYP2C9與UGT2B7對於VPA與4-ene-VPA之藥動學參數的影響程度。最後將本研究所建立PBPK模型(基於個體發育學),用於預測兒童各年齡次群之VPA最適劑量,並與傳統Fried氏或Young氏規則(基於年齡)、Clark氏規則(基於體重)及基於體表面積(body surface area, BSA)法所推算兒童用藥劑量進行比較。 結果:當HepG2分別轉染CYP2C9或CYP2E1(模擬兒童VPA主要代謝途徑)時,觀察到VPA可導致HepG2細胞的粒線體超氧化物增加與細胞死亡。而當HepG2同時轉染CYP2C9與UGT2B7,或共同轉染CYP2E1與UGT2B7(模擬成人VPA主要代謝途徑)時,均未觀察到前述細胞傷害,或細胞損傷情形較僅轉染CYP2C9或CYP2E1時輕微;惟僅在轉染CYP2C9的HepG2,可以觀察到類似VPA肝損傷之脂質積累。有趣的是,當HepG2與CYP2C9及UGT2B7共轉染時,並無脂質累積現象。本研究彙集人體藥動學研究文獻14篇,並將VPA濃度-時間變化曲線圖之觀測值數位化處理,進而用於測試與評估前所建立PBPK模型之性能。結果顯示,以各臨床研究設計所模擬的血漿濃度-時間曲線,觀察值均落在預測值之5th至95th百分位數範圍內,且所預測的平均濃度-時間曲線下面積(AUC)、平均峰值血漿濃度(Cmax),均與觀測值之差異介於0.5-2倍範圍間。敏感性分析結果呈現,在嬰幼兒(出生到一個月大)和青少年至成人(13至65歲)時, Clint,UGT2B7對VPA之AUC最具影響力。而在所有年齡層,Clint,CYP2C9則對4-ene-VPA之AUC和Cmax最具影響力。本研究以基於個體發育學PBPK 模型所預測的兒童VPA建議劑量,與Clark氏規則所推估的劑量相若,且兩種預測方式所得之Cmax,均於有效濃度目標範圍內。 結論:In vitro研究結果顯示,當HepG2分別轉染CYP2C9或CYP2E1時,VPA 所造成的細胞損傷較HepG2同時轉染CYP2C9與UGT2B7,或共同轉染CYP2E1與UGT2B7時嚴重,得以解釋VPA肝毒性在兒童中更常被觀察到。本研究成功建立兒童與成人VPA及4-ene-VPA之PBPK模型,並應用於探討在個體發育過程中,藥物代謝酵素表現之變化於VPA與4-ene-VPA濃度影響。本研究所建立的PBPK模型和Clark氏規則是估計兒童劑量的推薦方法。然而,仍有一些未知因素可能影響兒童VPA的吸收、代謝、分布及排除,值得進一步研究。 | zh_TW |
dc.description.abstract | Background: Valproic acid (VPA) is a commonly used anticonvulsant in pediatrics and adults with a complex pharmacokinetics (PKs) profile. Hepatotoxicity is enlisted in the “Boxed Warning” of the VPA package insert. Real-world data indicate neonates and infants have higher incidence of valproate hepatotoxicity than adults. This study aimed to investigate the ontogeny role in valproate hepatotoxicity and to elucidate possible mechanisms for the observed higher incidence in children. Methods: Human hepatocellular carcinoma HepG2 cells transfected with VPA metabolism-associated enzymes, cytochrome P450 (CYP) 2C9 and 2E1, and UDP-glucuronosyltransferase (UGT) 2B7, were used as experimental models to simulated different metabolic pathways between pediatrics and adults. Respective in vitro, in silico, and in vivo parameter values for constructing VPA and its metabolite, 4-ene-VPA, compound files were collected and optimized. The study also compiled VPA clinical PKs study data. The physiologically based pharmacokinetics (PBPK) models for VPA and 4-ene-VPA in adults and pediatrics were constructed and performed using the Simcyp PBPK Simulator. Sensitivity analysis was performed to characterize the influences of CYP2C9 and UGT2B7 on PK parameters of VPA and 4-ene-VPA by sensitivity index. Finally, the predicted doses for pediatric subgroups by the developed PBPK model (ontogeny-based) were compared with doses estimated by Fried’s or Young’s rule (age-based), Clark’s rule (weight-based), and body surface area (BSA)-based method. Results: The VPA increased mitochondrial superoxide and cell death in both HepG2 cells transfected with either CYP2C9 or CYP2E1 (representing major VPA metabolic pathway in pediatrics). When HepG2 cells were co-transfected with CYP2C9 and UGT2B7, or co-transfected with CYP2E1 and UGT2B7 (representing major VPA metabolic pathway in adults), the aforementioned cell injuries were minimal as compared to HepG2 transfected with either CYP2C9 or CYP2E1. VPA-associated lipid accumulation was only observed in HepG2 cells transfected with CYP2C9. Interestingly, no lipid accumulation was observed when HepG2 cells were co-transfected with CYP2C9 and UGT2B7. Observed data digitized from fourteen published literatures were utilized to develop and evaluate PBPK model performance. The observed data of plasma concentration-time profiles fell within the 5¬¬¬th to 95th percentile of PBPK predicted value. All of the predicted mean area-under-the-curve (AUC) and peak plasma concentration (Cmax) values were within two-fold of the observed data. Sensitivity analysis showed that Clint,UGT2B7 was the most influential parameters on the AUC of VPA in newborns and neonates (after birth up to 1 month), and adolescents to adults (13-18 years old). Clint,CYP2C9 was the most important key parameter with significant impact both on AUC and Cmax of 4-ene-VPA. The predicted doses by the ontogeny-based PBPK model were similar to estimations by the weight-based Clark’s rule among various age subgroups. All the predicted Cmax were within targeted therapeutic ranges. Conclusion: The in vitro data showed that the VPA-induced cell injuries in HepG2 cells transfected with either CYP2C9 or CYP2E1 were more severe than in HepG2 cells co-transfected with CYP2C9 and UGT2B7 or CYP2E1 and UGT2B7, indicating young children are prone to valproate hepatotoxicity. The developed VPA and 4-ene-VPA PBPK models also pointed to the importance of ontogeny in the differential metabolic pathways observed between pediatrics and adults. The ontogeny-based PBPK model and Clark’s rule are recommended methods for estimating pediatric doses. However, further investigation is required to elucidate more unidentified factors that may affect absorption, distribution, metabolism, and excretion of VPA in pediatrics. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:29:45Z (GMT). No. of bitstreams: 1 U0001-2508202215074600.pdf: 4277061 bytes, checksum: 9a4ab0dd9a6d636761f6bc6c800df6fe (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 摘要………………………………………………………………………………………ⅰ Abstract…………………………………………………………………………….……ⅲ Contents…………………………………………………………………………………ⅵ List of Figures………………………………………………………………………..….ⅸ List of Tables………………………………………………………………………….…ⅺ Chapter 1 Introduction…………………………………………………………………...1 1.1 Pediatric drug development……………………………………………………..2 1.1.1 Ontogeny of drug-metabolizing enzymes………………………………..3 1.1.2 Pediatric dose calculation………………………………………………..5 1.2 Drug-induced liver injury……………………………………………………….5 1.2.1 Mechanism of drug- induced liver injury………………………………..6 1.2.2 Risk factor for Drug-induced liver injury………………………………..7 1.3 Background of Valproic acid…………………………………………...……….9 1.3.1 Mechanism of action of valproic acid………………………………….10 1.3.2 The pharmacokinetics of valproic acid…………………………………14 1.3.3 Possible mechanisms of valproate hepatotoxicity……………………...17 1.4 Physiologically based pharmacokinetics model……………………………….19 1.4.1 Background and methodology of the PBPK model……………………20 1.4.2 Pediatric PBPK model………………………………………………….23 1.5 HepG2 cell line………………………………………………………………...23 Chapter 2 Study Objectives……………………………………………………………..24 Chapter 3 Materials and Methods……………………………………………………….25 3.1 In vitro experiments……………………………………………………………25 3.1.1 Chemicals and reagents………………………………………………...25 3.1.2 Instruments……………………………………………………………..25 3.1.3 Cell culture……………………………………………………………..26 3.1.4 Plasmid preparation and amplification…………………………………27 3.1.5 Cell transfection………………………………………………………..28 3.1.6 Cell viability assay……………………………………………………..28 3.1.7 Mitochondrial superoxide measurement……………………………….28 3.1.8 Nile Red staining……………………………………………………….29 3.1.9 Statistical analysis……………………………………………………...29 3.2 PBPK model building and verification………………………………………..30 3.2.1 Data sources……………………………………………………………30 3.2.2 Software tool and workflow……………………………………………30 3.2.3 Adult PBPK model development………………………………………31 3.2.4 Pediatric PBPK model development and application…………………..35 Chapter 4 Results……………………………………………………………………….43 4.1. In vitro experiments…………………………………………………………...43 4.1.1. Valproate hepatotoxicity in cell viability………………………………43 4.1.2. VPA associated accumulation of mitochondrial superoxide and lipid…43 4.2. PBPK modelling of VPA and 4-ene-VPA…………………………………….46 4.2.1. PBPK models validation………………………………………………46 4.2.2. The impact of CYP2C9 and UGT2B7 activities on VPA Cl in virtual subjects………………………………………………………………………52 4.2.3. Sensitivity analysis of CYP2C9 and UGT2B7 activities on VPA and 4-ene-VPA PK parameters in virtual subjects………………………………….54 4.2.4. Dose estimation for the pediatric population………………………….56 Chapter 5 Discussion……………………………………………………………………60 Chapter 6 Conclusion…………………………………………………………………...64 References……………………………………………………………………………...65 Supplemental Data……………………………………………………………………...78 | |
dc.language.iso | en | |
dc.title | 藥物代謝酵素發育表現於Valproic acid肝損傷之探討 | zh_TW |
dc.title | Ontogeny of Drug Metabolizing Enzymes in Valproic Acid Hepatotoxicity | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林君榮(Chun-Jung Lin),孔繁璐(Fan-Lu Kung),黃彥銘(Yen-Ming Huang),饒敦(Tun Jao) | |
dc.subject.keyword | 藥物代謝酵素,HepG2細胞,個體發育,PBPK模型,兒童劑量,2-丙(基)戊酸, | zh_TW |
dc.subject.keyword | drug-metabolizing enzymes,HepG2 cells,Ontogeny,PBPK model,pediatric dose,valproic acid, | en |
dc.relation.page | 80 | |
dc.identifier.doi | 10.6342/NTU202202809 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-08-29 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
dc.date.embargo-lift | 2022-10-05 | - |
Appears in Collections: | 藥學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
U0001-2508202215074600.pdf Access limited in NTU ip range | 4.18 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.