請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84855
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 顧家綺(Chia-Chi Ku) | |
dc.contributor.author | Chia-Hsuan Hung | en |
dc.contributor.author | 洪家萱 | zh_TW |
dc.date.accessioned | 2023-03-19T22:29:13Z | - |
dc.date.copyright | 2022-10-05 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-29 | |
dc.identifier.citation | 1. Zhao, L., et al., Nanoparticle vaccines. Vaccine, 2014. 32(3): p. 327-337. 2. Bachmann, M.F. and G.T. Jennings, Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nature Reviews Immunology, 2010. 10(11): p. 787-796. 3. Nooraei, S., et al., Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnology, 2021. 19(1): p. 59. 4. Obukhanych, T.V. and M.C. Nussenzweig, T-independent type II immune responses generate memory B cells. Journal of Experimental Medicine, 2006. 203(2): p. 305-310. 5. Swanson, C.L., et al., Type I IFN enhances follicular B cell contribution to the T cell–independent antibody response. Journal of Experimental Medicine, 2010. 207(7): p. 1485-1500. 6. Mohsen, M.O., et al., Major findings and recent advances in virus–like particle (VLP)-based vaccines. Seminars in Immunology, 2017. 34: p. 123-132. 7. Kim, Y.-H., et al., Influenza vaccines: Past, present, and future. Reviews in Medical Virology, 2022. 32(1): p. e2243. 8. Nuwarda, R.F., A.A. Alharbi, and V. Kayser, An Overview of Influenza Viruses and Vaccines. Vaccines, 2021. 9(9). 9. Weis, S. and A.J.W. te Velthuis, Influenza Virus RNA Synthesis and the Innate Immune Response. Viruses, 2021. 13(5). 10. Chen, J., et al., Advances in Development and Application of Influenza Vaccines. Frontiers in Immunology, 2021. 12. 11. Kuchipudi, S.V. and R.H. Nissly, Novel Flu Viruses in Bats and Cattle: “Pushing the Envelope” of Influenza Infection. Veterinary Sciences, 2018. 5(3). 12. Comas-Garcia, M., M. Colunga-Saucedo, and S. Rosales-Mendoza, The Role of Virus-Like Particles in Medical Biotechnology. Molecular Pharmaceutics, 2020. 17(12): p. 4407-4420. 13. Pielak, R.M. and J.J. Chou, Influenza M2 proton channels. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2011. 1808(2): p. 522-529. 14. Nayak, D.P., E.K.-W. Hui, and S. Barman, Assembly and budding of influenza virus. Virus Research, 2004. 106(2): p. 147-165. 15. Rajão, D.S. and D.R. Pérez, Universal Vaccines and Vaccine Platforms to Protect against Influenza Viruses in Humans and Agriculture. Frontiers in Microbiology, 2018. 9. 16. Zepeda-Cervantes, J., J.O. Ramírez-Jarquín, and L. Vaca, Interaction Between Virus-Like Particles (VLPs) and Pattern Recognition Receptors (PRRs) From Dendritic Cells (DCs): Toward Better Engineering of VLPs. Frontiers in Immunology, 2020. 11. 17. Zhang, L.F., et al., HPV6b virus like particles are potent immunogens without adjuvant in man. Vaccine, 2000. 18(11): p. 1051-1058. 18. Yang, J.-R., et al., A novel H6N1 virus-like particle vaccine induces long-lasting cross-clade antibody immunity against human and avian H6N1 viruses. Antiviral Research, 2016. 126: p. 8-17. 19. Glenny, A.T., Pope, C.G., Waddington, H. and Wallace, U., The Antigenic Value of Toxoid Precipitated by Potassium Alum. Journal of Pathology & Bacteriology, 1926. 29,: p. 31-40. 20. CDC. Adjuvants and Vaccines. vaccine safety 2020 August 14; Available from: https://www.cdc.gov/vaccinesafety/concerns/adjuvants.html. 21. Kool, M., K. Fierens, and B.N. Lambrecht, Alum adjuvant: some of the tricks of the oldest adjuvant. Journal of Medical Microbiology, 2012. 61(7): p. 927-934. 22. Ko, E.-J. and S.-M. Kang, Immunology and efficacy of MF59-adjuvanted vaccines. Human Vaccines & Immunotherapeutics, 2018. 14(12): p. 3041-3045. 23. Vono, M., et al., The adjuvant MF59 induces ATP release from muscle that potentiates response to vaccination. Proceedings of the National Academy of Sciences, 2013. 110(52): p. 21095-21100. 24. O’Hagan, D.T., et al., The mechanism of action of MF59 – An innately attractive adjuvant formulation. Vaccine, 2012. 30(29): p. 4341-4348. 25. Seubert, A., et al., Adjuvanticity of the oil-in-water emulsion MF59 is independent of Nlrp3 inflammasome but requires the adaptor protein MyD88. Proceedings of the National Academy of Sciences, 2011. 108(27): p. 11169-11174. 26. Ellebedy, A.H., et al., Inflammasome-independent role of the apoptosis-associated speck-like protein containing CARD (ASC) in the adjuvant effect of MF59. Proceedings of the National Academy of Sciences, 2011. 108(7): p. 2927-2932. 27. Hui, G.S. and C.N. Hashimoto, Adjuvant formulations possess differing efficacy in the potentiation of antibody and cell mediated responses to a human malaria vaccine under selective immune genes knockout environment. International Immunopharmacology, 2008. 8(7): p. 1012-1022. 28. Bode, C., et al., CpG DNA as a vaccine adjuvant. Expert Rev Vaccines, 2011. 10(4): p. 499-511. 29. Lee, G.H. and S.G. Lim, CpG-Adjuvanted Hepatitis B Vaccine (HEPLISAV-B®) Update. Expert Rev Vaccines, 2021. 20(5): p. 487-495. 30. Vats, A., et al., Poly I:C stimulation in-vitro as a marker for an antiviral response in different cell types generated from Buffalo (Bubalus bubalis). Molecular Immunology, 2020. 121: p. 136-143. 31. Martins, K.A.O., S. Bavari, and A.M. Salazar, Vaccine adjuvant uses of poly-IC and derivatives. Expert Review of Vaccines, 2015. 14(3): p. 447-459. 32. Ammi, R., et al., Poly(I:C) as cancer vaccine adjuvant: Knocking on the door of medical breakthroughs. Pharmacology & Therapeutics, 2015. 146: p. 120-131. 33. De Waele, J., et al., A systematic review on poly(I:C) and poly-ICLC in glioblastoma: adjuvants coordinating the unlocking of immunotherapy. Journal of Experimental & Clinical Cancer Research, 2021. 40(1): p. 213. 34. Didierlaurent, A.M., et al., AS04, an Aluminum Salt- and TLR4 Agonist-Based Adjuvant System, Induces a Transient Localized Innate Immune Response Leading to Enhanced Adaptive Immunity. The Journal of Immunology, 2009. 183(10): p. 6186. 35. Riedl, P., et al., Priming Th1 Immunity to Viral Core Particles Is Facilitated by Trace Amounts of RNA Bound to Its Arginine-Rich Domain. The Journal of Immunology, 2002. 168(10): p. 4951. 36. Scheel, B., et al., Immunostimulating capacities of stabilized RNA molecules. European Journal of Immunology, 2004. 34(2): p. 537-547. 37. Martínez-Gil, L., et al., A Sendai Virus-Derived RNA Agonist of RIG-I as a Virus Vaccine Adjuvant. Journal of Virology, 2013. 87(3): p. 1290-1300. 38. Heidenreich, R., et al., A novel RNA-based adjuvant combines strong immunostimulatory capacities with a favorable safety profile. International Journal of Cancer, 2015. 137(2): p. 372-384. 39. Ziegler, A., et al., A New RNA-Based Adjuvant Enhances Virus-Specific Vaccine Responses by Locally Triggering TLR- and RLH-Dependent Effects. The Journal of Immunology, 2017. 198(4): p. 1595. 40. Kwak, H.W., et al., Cricket paralysis virus internal ribosome entry site-derived RNA promotes conventional vaccine efficacy by enhancing a balanced Th1/Th2 response. Vaccine, 2019. 37(36): p. 5191-5202. 41. Kim, Y.-H., et al., Inactivated influenza vaccine formulated with single-stranded RNA-based adjuvant confers mucosal immunity and cross-protection against influenza virus infection. Vaccine, 2020. 38(39): p. 6141-6152. 42. Bang, Y.-J., et al., Effective inactivated influenza vaccine for the elderly using a single-stranded RNA-based adjuvant. Scientific Reports, 2021. 11(1): p. 11981. 43. Park, H.-J., et al., Nanoformulated Single-Stranded RNA-Based Adjuvant with a Coordinative Amphiphile as an Effective Stabilizer: Inducing Humoral Immune Response by Activation of Antigen-Presenting Cells. Angewandte Chemie International Edition, 2020. 59(28): p. 11540-11549. 44. Wu, C.-Y., et al., Mammalian Expression of Virus-Like Particles for Advanced Mimicry of Authentic Influenza Virus. PLOS ONE, 2010. 5(3): p. e9784. 45. Hilgarth, R.S. and T.M. Lanigan, Optimization of overlap extension PCR for efficient transgene construction. MethodsX, 2020. 7: p. 100759. 46. Kawakami, E., et al., Strand-specific real-time RT-PCR for distinguishing influenza vRNA, cRNA, and mRNA. Journal of Virological Methods, 2011. 173(1): p. 1-6. 47. Kopec, A.M., et al., Optimized solubilization of TRIzol-precipitated protein permits Western blotting analysis to maximize data available from brain tissue. J Neurosci Methods, 2017. 280: p. 64-76. 48. Hummon, A.B., et al., Isolation and solubilization of proteins after TRIzol extraction of RNA and DNA from patient material following prolonged storage. Biotechniques, 2007. 42(4): p. 467-70, 472. 49. Hoffmann, E., et al., A DNA transfection system for generation of influenza A virus from eight plasmids. Proceedings of the National Academy of Sciences, 2000. 97(11): p. 6108-6113. 50. Phan, T., et al., Segment-Specific Kinetics of mRNA, cRNA, and vRNA Accumulation during Influenza Virus Infection. Journal of Virology, 2021. 95(10): p. e02102-20. 51. Krammer, F., The human antibody response to influenza A virus infection and vaccination. Nature Reviews Immunology, 2019. 19(6): p. 383-397. 52. Zhang, X., et al., A One-Plasmid System To Generate Influenza Virus in Cultured Chicken Cells for Potential Use in Influenza Vaccine. Journal of Virology, 2009. 83(18): p. 9296-9303. 53. Bhat, S., et al., A ligation and restriction enzyme independent cloning technique: an alternative to conventional methods for cloning hard-to-clone gene segments in the influenza reverse genetics system. Virology Journal, 2020. 17(1): p. 82. 54. Creative Biogene Biotechnology. Transient Transfection Protocol. Available from: https://www.creative-biogene.com/support/Transient-transfection-protocol.html. 55. C. Gomes, A., et al., Type of RNA Packed in VLPs Impacts IgG Class Switching—Implications for an Influenza Vaccine Design. Vaccines, 2019. 7(2). 56. Vanderven, H.A., et al., What Lies Beneath: Antibody Dependent Natural Killer Cell Activation by Antibodies to Internal Influenza Virus Proteins. EBioMedicine, 2016. 8: p. 277-290. 57. Yount, J.S., et al., A novel role for viral-defective interfering particles in enhancing dendritic cell maturation. J Immunol, 2006. 177(7): p. 4503-13. 58. Gao, W., et al., Prevailing I292V PB2 mutation in avian influenza H9N2 virus increases viral polymerase function and attenuates IFN-β induction in human cells. J Gen Virol, 2019. 100(9): p. 1273-1281. 59. Hu, M., et al., Amino acid substitutions V63I or A37S/I61T/V63I/V100A in the PA N-terminal domain increase the virulence of H7N7 influenza A virus. Scientific Reports, 2016. 6(1): p. 37800. 60. Kowalczyk, A., et al., Self-adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity. Vaccine, 2016. 34(33): p. 3882-3893. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84855 | - |
dc.description.abstract | 流感病毒的核糖核蛋白 (RNP)複合體具有轉錄和複製病毒核糖核酸的功能。流感病毒的核醣核酸在5’端不具有帽狀結構,裸露的三磷酸端會做為維甲酸誘導基因-I (RIG-I)的促效劑(agonist),活化I 型干擾素及其相關基因包括白細胞介素-1β (IL-1β)等細胞因子誘導發炎的產生,具備疫苗佐劑的條件。流感病毒的病毒樣顆粒(VLP)具有很好的免疫原性,在動物實驗中證明能誘導個體產生很好的抗原特異性以及跨越病毒株交叉反應的抗體。為了產出流感病毒核糖核蛋白複合體的VLP (H5N2 VLP-RNP),首先,我從H5N2病毒萃取病毒的核糖核酸,經過反轉錄後對四個相關的基因(聚合酶鹼性蛋白1, PB1、聚合酶鹼性蛋白2, PB2、聚合酶酸性蛋白, PA以及核蛋白, NP) 進行放大並建立雙啟動子表達的載體,讓每個質體都能夠同時表達正股的信使核糖核酸以及負股的病毒核醣核酸。以標籤(tag)進行即時定量聚合酶連鎖反應(qPCR),結果顯示,雙啟動子表達質體在單獨轉染下,兩種核糖核酸約呈等量表達,同時以特異性抗體驗證核蛋白表達。進一步將這四個基因分為兩組,建構二個表達質體,同時轉染到生產VLP的細胞株 (由中研院農生中心蕭培文博士提供),製備出含有核糖核蛋白複合體的流感病毒VLP。未來若能成功將RNP包裹進VLP將可進一步證實RNP作為疫苗佐劑的可能優勢。 | zh_TW |
dc.description.abstract | Influenza viral RNP complex is able to catalyze viral RNA transcription and replication. Without cap structure, 5' tri-phosphate viral RNA generated by the RNP complex is an agonist of RIG-I that may induce proinflammatory cytokines and chemokines like IFN-I and IL-1β, a character of vaccine adjuvant. Viral-like particles (VLP) have high immunogenicity and have been proven to increase antibody specificity and cross-reactivity against different viral subtypes in animal studies. In order to generate an H5N2 VLP-RNP, I first extracted viral RNA from the H5N2 virus, amplified and generated dual-promoter expression plasmids after reverse transcription of four related genes (PB1, PB2, PA, and NP), enable all four plasmids to express positive-strand mRNA and negative-strand vRNA simultaneously. As the result, mRNA and vRNA expressed equally in tagged-qPCR analysis after single plasmid transfection, and NP protein expression was also verified through specific antibodies. Further, these four genes were cloned in two expression plasmids and were co-transfected to VLP-producer cells (kindly provided by Dr. Pei-Wen Hsiao from SINICA) to generate influenza VLPs that encapsidated RNP complexes. Advancements of being vaccine adjuvant may be further proved when the RNP complex was well encapsidated in VLPs. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:29:13Z (GMT). No. of bitstreams: 1 U0001-2908202214121500.pdf: 2135509 bytes, checksum: 88e1728e8d0d01af614498180115dea6 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 中文摘要 2 Abstract 3 目錄 4 第一章、導論 6 1. VLP疫苗 7 2. 流感病毒VLP的研究 7 2.1. 流感病毒對疫苗的需求 7 2.2. 流感病毒的VLP結構 8 3. 疫苗佐劑 9 3.1. 傳統的佐劑 9 3.2. 新型佐劑 10 3.3. ssRNA佐劑 11 第二章、研究目的 12 第三章、方法與材料 14 1. 方法 15 1.1. 質體建構 15 1.1.1. 以PCR選殖病毒基因 15 1.1.2. 質體轉型(transformation)及純化 16 1.1.3. 建構雙啟動子表達質體系統 16 1.1.4. 建構多基因雙啟動子表達質體 17 1.2. 轉染與基因表達 17 1.2.1. qPCR測量mRNA及vRNA表現量 18 1.2.2. Western blot檢測NP蛋白表現 18 1.3. VLP製備 19 1.3.1. 建構VLP表達系統 19 1.3.2. 製備H5N2 VLP及H5N2 VLP-RNP 21 2. 材料 22 2.1. Primer 列表 22 2.1.1. Cloning primer 22 2.1.2. Giant plasmid cloning primer 23 2.1.3. qPCR primer 24 2.2. 抗體列表 26 2.3. 試劑和材料列表 27 2.4. 儀器列表 29 第四章、實驗結果 30 1. 從病毒RNA放大基因片段 31 2. 雙啟動子表達質體的RNA及蛋白表達 32 3. 建構多基因雙啟動子表達質體 33 4. 製備H5N2 VLP producer cell line及純化VLP 34 5. 轉染後H5N2 VLP-producer cell line中RNP的RNA及蛋白表達 35 第五章、討論 36 第六章、正圖 40 圖1、從病毒RNA放大基因片段 42 圖2、雙啟動子表達質體的RNA及蛋白表達 44 圖3、建構多基因雙啟動子表達質體 46 圖4、製備H5N2 VLP producer cell line 48 圖5、H5N2 VLP-producer cell及VLP中的RNA及蛋白表現 50 第七章、參考文獻 51 附錄 57 | |
dc.language.iso | zh-TW | |
dc.title | 流感病毒核糖核蛋白複合體對於病毒樣顆粒的佐劑作用 | zh_TW |
dc.title | Study on the adjuvant effect of viral RNP complex on influenza viral-like particle vaccines | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蕭培文(Pei-Wen Hsiao),張淑媛(Sui-Yuan Chang) | |
dc.subject.keyword | 流感病毒核糖核蛋白,疫苗佐劑,雙啟動子表達質體克隆, | zh_TW |
dc.subject.keyword | Influenza viral RNP,vaccine adjuvant,dual expression plasmid cloning, | en |
dc.relation.page | 62 | |
dc.identifier.doi | 10.6342/NTU202202927 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-08-29 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 免疫學研究所 | zh_TW |
dc.date.embargo-lift | 2022-10-05 | - |
顯示於系所單位: | 免疫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2908202214121500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.09 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。