Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84851
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor席行正(Hsing-Cheng Hsi)
dc.contributor.authorSzu-Han Wuen
dc.contributor.author吳思瀚zh_TW
dc.date.accessioned2023-03-19T22:29:00Z-
dc.date.copyright2022-09-02
dc.date.issued2022
dc.date.submitted2022-08-29
dc.identifier.citation[1] M. Si, B. Shen, H. Zhang, L. Liu, W. Zhou, Z. Liu, Y. Pan, X. Zhang. Comparative Study of NO Oxidation under a Low O3/NO Molar Ratio Using 15% Mn/TiO2, 15% Co/TiO2, and 15% Mn–Co(2:1)/TiO2 Catalysts. Industrial & Engineering Chemistry Research 2020, 59 (4), 1467-1476. [2] Y. Li, H. Cheng, D. Li, Y. Qin, Y. Xie, S. Wang. WO3/CeO2-ZrO2, a promising catalyst for selective catalytic reduction (SCR) of NOx with NH3 in diesel exhaust. Chemical Communications 2008, (12), 1470-1472. [3] M. Shen, C. Li, J. Wang, L. Xu, W. Wang, J. Wang. New insight into the promotion effect of Cu doped V2O5/WO3–TiO2 for low temperature NH3-SCR performance. RSC Advances 2015, 5 (44), 35155-35165. [4] J. Li, H. Chang, L. Ma, J. Hao, R. T. Yang. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review. Catalysis Today 2011, 175 (1), 147-156. [5] X. You, Z. Sheng, D. Yu, L. Yang, X. Xiao, S. Wang. Influence of Mn/Ce ratio on the physicochemical properties and catalytic performance of graphene supported MnOx-CeO2 oxides for NH3-SCR at low temperature. Applied Surface Science 2017, 423, 845-854. [6] X. Wang, Y. Zheng, Z. Xu, X. Liu, Y. Zhang. Low-temperature selective catalytic reduction of NO over MnOx/CNTs catalysts: Effect of thermal treatment condition. Catalysis Communications 2014, 50, 34-37. [7] W. Su, X. Lu, S. Jia, J. Wang, H. Ma, Y. Xing. Catalytic Reduction of NOx Over TiO2–Graphene Oxide Supported with MnOx at Low Temperature. Catalysis Letters 2015, 145 (7), 1446-1456. [8] 諸安均(2020)。以錳鈰氧化物與石墨烯複合材於不同反應環境進行低溫脫硝。國立臺灣大學環境工程學研究所,臺北市。 [9] M. Berglund, C.-E. Boström, G. Bylin, L. Ewetz, L. Gustafsson, P. Moldéus, S. Norberg, G. Pershagen, K. Victorin. Health risk evaluation of nitrogen oxides. Scandinavian Journal of Work, Environment & Health 1993, 19, 1-72. [10] D. Kang, K. Pickering. Lightning NOx Emissions and the Implications for Surface Air Quality over the Contiguous United States. EM (Pittsburgh Pa) 2018, 11, 1-6. [11] L. Cox. Nitrogen oxides (NOx) why and how they are controlled; Diane Publishing, 1999. [12] J. L. Toof. A Model for the Prediction of Thermal, Prompt, and Fuel NOx Emissions From Combustion Turbines. Journal of Engineering for Gas Turbines and Power 1986, 108 (2), 340-347. [13] A. Singh, M. Agrawal. Acid rain and its ecological consequences. Journal of Environmental Biology 2007, 29 (1), 15. [14] B. Rani, U. Singh, A. K. Chuhan, D. Sharma, R. Maheshwari. Photochemical Smog Pollution and Its Mitigation Measures. Journal of Advanced Scientific Research 2011, 2 (4), 28-33. [15] H. S. Rosenberg, L. M. Curran, A. V. Slack, J. Ando, J. H. Oxley. Post combustion methods for control of NOx emissions. Progress in Energy and Combustion Science 1980, 6 (3), 287-302. [16] S. Falcone Miller, B. G. Miller. Advanced flue gas cleaning systems for sulfur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants. In Advanced Power Plant Materials, Design and Technology, Roddy, D. Ed.; Woodhead Publishing, 2010, 187-216. [17] Y. Sun, E. Zwolińska, A. G. Chmielewski. Abatement technologies for high concentrations of NOx and SO2 removal from exhaust gases: A review. Critical Reviews in Environmental Science and Technology 2016, 46 (2), 119-142. [18] M. Zhao, P. Xue, J. Liu, J. Liao, J. Guo. A review of removing SO2 and NOx by wet scrubbing. Sustainable Energy Technologies and Assessments 2021, 47, 101451. [19] W. G. Whitman. The two-film theory of gas absorption. Chem. Metall. Eng. 1923, 29, 146-148. [20] P. V. Danckwerts. Significance of Liquid-Film Coefficients in Gas Absorption. Industrial & Engineering Chemistry 1951, 43 (6), 1460-1467. [21] L. B. Duan, J. Cui, Y. Jiang, C. S. Zhao, E. J. Anthony. Partitioning behavior of Arsenic in circulating fluidized bed boilers co-firing petroleum coke and coal. Fuel Processing Technology 2017, 166, 107-114. [22] J. Dora. Parametric studies of the effectiveness of oxidation of NO by ozone. Chemical and Process Engineering 2009, 30 (4), 621-634. [23] R. Krzyzynska, N. D. Hutson. Effect of solution pH on SO2, NOx, and Hg removal from simulated coal combustion flue gas in an oxidant-enhanced wet scrubber. Journal of the Air & Waste Management Association 2012, 62 (2), 212-220. [24] Z. Hong, Z. Wang, X. Li. Catalytic oxidation of nitric oxide (NO) over different catalysts: an overview. Catalysis Science & Technology 2017, 7 (16), 3440-3452. [25] J. D. Wilde, G. B. Marin. Investigation of simultaneous adsorption of SO2 and NOx on Na-γ-alumina with transient techniques. Catalysis Today 2000, 62 (4), 319-328. [26] A. G. Chmielewski. Industrial applications of electron beam flue gas treatment—From laboratory to the practice. Radiation Physics and Chemistry 2007, 76 (8), 1480-1484. [27] J. C. Person, D. O. Ham. Removal of SO2 and NOx from stack gases by electron beam irradiation. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry 1988, 31 (1), 1-8. [28] M. D. Amiridis, T. Zhang, R. J. Farrauto. Selective catalytic reduction of nitric oxide by hydrocarbons. Applied Catalysis B: Environmental 1996, 10 (1), 203-227. [29] G. Busca, L. Lietti, G. Ramis, F. Berti. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review. Applied Catalysis B: Environmental 1998, 18 (1), 1-36. [30] S. Yang, S. Xiong, Y. Liao, X. Xiao, F. Qi, Y. Peng, Y. Fu, W. Shan, J. Li. Mechanism of N2O Formation during the Low-Temperature Selective Catalytic Reduction of NO with NH3 over Mn–Fe Spinel. Environmental Science & Technology 2014, 48 (17), 10354-10362. [31] A. Szymaszek, B. Samojeden, M. Motak. The Deactivation of Industrial SCR Catalysts—A Short Review. Energies 2020, 13 (15). [32] L. J. Alemany, F. Berti, G. Busca, G. Ramis, D. Robba, G. P. Toledo, M. Trombetta. Characterization and composition of commercial V2O5-WO3-TiO2 SCR catalysts. Applied Catalysis B: Environmental 1996, 10 (4), 299-311. [33] D. Fang, J. Xie, H. Hu, H. Yang, F. He, Z. Fu. Identification of MnOx species and Mn valence states in MnOx/TiO2 catalysts for low temperature SCR. Chemical Engineering Journal 2015, 271, 23-30. [34] D. Wang, Q. Chen, X. Zhang, C. Gao, B. Wang, X. Huang, Y. Peng, J. Li, C. Lu, J. Crittenden. Multipollutant Control (MPC) of Flue Gas from Stationary Sources Using SCR Technology: A Critical Review. Environmental Science & Technology 2021, 55 (5), 2743-2766. [35] G. Qi, R. T. Yang. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx–CeO2 catalyst. Journal of Catalysis 2003, 217 (2), 434-441. [36] M. Tayyeb Javed, N. Irfan, B. M. Gibbs. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction. Journal of Environmental Management 2007, 83 (3), 251-289. [37] F. Lin, Z. Wang, Z. Zhang, Y. He, Y. Zhu, J. Shao, D. Yuan, G. Chen, K. Cen. Flue Gas Treatment with Ozone Oxidation: An Overview on NO , Organic Pollutants, and Mercury. Chemical Engineering Journal 2019, 382, 123030. [38] F. Lin, Z. Wang, Q. Ma, Y. He, R. Whiddon, Y. Zhu, J. Liu. N2O5 Formation Mechanism during the Ozone-Based Low-Temperature Oxidation deNOx Process. Energ Fuel 2016, 30 (6), 5101-5107. [39] H. Wang, H. Chen, Y. Wang, Y.-K. Lyu. Performance and mechanism comparison of manganese oxides at different valence states for catalytic oxidation of NO. Chemical Engineering Journal 2019, 361, 1161-1172. [40] V. P. Santos, M. F. R. Pereira, J. J. M. Órfão, J. L. Figueiredo. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Applied Catalysis B: Environmental 2010, 99 (1), 353-363. [41] D. Wang, H. Li, Q. Yao, S. Hui, Y. Niu. Assisting effect of Al2O3 on MnOx for NO catalytic oxidation. Green Energy & Environment 2021, 6 (6), 903-909. [42] N. Tang, Y. Liu, H. Wang, Z. Wu. Mechanism Study of NO Catalytic Oxidation over MnOx/TiO2 Catalysts. The Journal of Physical Chemistry C 2011, 115 (16), 8214-8220. [43] D. Bhatia, R. W. McCabe, M. P. Harold, V. Balakotaiah. Experimental and kinetic study of NO oxidation on model Pt catalysts. Journal of Catalysis 2009, 266 (1), 106-119. [44] L. Ma, W. Zhang, Y.-G. Wang, X. Chen, W. Yu, K. Sun, H. Sun, J. Li, J. W. Schwank. Catalytic performance and reaction mechanism of NO oxidation over Co3O4 catalysts. Applied Catalysis B: Environmental 2020, 267, 118371. [45] M. Si, B. Shen, L. Liu, H. Zhang, W. Zhou, J. Wang, X. Zhang, Z. Zhang, C. Wu. Catalytic oxidation of NO over MnOx–CoOx/TiO2 in the presence of a low ratio of O3/NO: activity and mechanism. RSC Advances 2020, 10 (41), 24493-24506. [46] F. Lin, Z. Wang, Q. Ma, Y. Yang, R. Whiddon, Y. Zhu, K. Cen. Catalytic deep oxidation of NO by ozone over MnOx loaded spherical alumina catalyst. Applied Catalysis B: Environmental 2016, 198, 100-111. [47] L. Liu, B. Shen, M. Si, F. Lu. Performance and mechanism of MnOx/γ-Al2O3 for low-temperature NO catalytic oxidation with O3/NO ratio of 0.5. Fuel Processing Technology 2021, 222, 106979. [48] J. Kullgren. Oxygen Vacancy Chemistry in Ceria. Doctoral thesis, comprehensive summary, Acta Universitatis Upsaliensis, Uppsala, 2012. F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, R. Rosei. Electron Localization Determines Defect Formation on Ceria Substrates. Science 2005, 309 (5735), 752-755. [49] B. Shen, X. Zhang, H. Ma, Y. Yao, T. Liu. A comparative study of Mn/CeO2, Mn/ZrO2 and Mn/Ce-ZrO2 for low temperature selective catalytic reduction of NO with NH3 in the presence of SO2 and H2O. Journal of Environmental Sciences 2013, 25 (4), 791-800. [50] Y. Huang, D. Gao, Z. Tong, J. Zhang, H. Luo. Oxidation of NO over cobalt oxide supported on mesoporous silica. Journal of Natural Gas Chemistry 2009, 18 (4), 421-428. [51] X. Li, S. Zhang, Y. Jia, X. Liu, Q. Zhong. Selective catalytic oxidation of NO with O2 over Ce-doped MnOx/TiO2 catalysts. Journal of Natural Gas Chemistry 2012, 21 (1), 17-24. [52] I. Jõgi, K. Erme, J. Raud, M. Laan. Oxidation of NO by ozone in the presence of TiO2 catalyst. Fuel 2016, 173, 45-51. [53] L. Guo, X. Zhang, F. Meng, J. Yuan, Y. Zeng, C. Han, Y. Jia, M. Gu, S. Zhang, Q. Zhong. Synergistic effect of F and triggered oxygen vacancies over F-TiO2 on enhancing NO ozonation. Journal of Environmental Sciences 2023, 125, 319-331. [54] F. Lin, Y. He, Z. Wang, Q. Ma, R. Whiddon, Y. Zhu, J. Liu. Catalytic oxidation of NO by O2 over CeO2–MnOx: SO2 poisoning mechanism. RSC Advances 2016, 6 (37), 31422-31430. [55] K. Li, X. Tang, H. Yi, P. Ning, D. Kang, C. Wang. Low-temperature catalytic oxidation of NO over Mn–Co–Ce–Ox catalyst. Chemical engineering journal 2012, 192, 99-104. [56] S. Pan, H. Luo, L. Li, Z. Wei, B. Huang. H2O and SO2 deactivation mechanism of MnOx/MWCNTs for low-temperature SCR of NOx with NH3. Journal of Molecular Catalysis A: Chemical 2013, 377, 154-161. [57] L. Guo, Q. Zhong, J. Ding, Z. Lv, W. Zhao, Z. Deng. Low-temperature NOx (x = 1, 2) removal with ˙OH radicals from catalytic ozonation over a RGO–CeO2 nanocomposite: the highly promotional effect of oxygen vacancies. RSC Advances 2016, 6 (91), 87869-87877. [58] A. K. Geim, K. S. Novoselov. The rise of graphene. Nature Materials 2007, 6 (3), 183-191. [59] N. A. A. Ghany, S. A. Elsherif, H. T. Handal. Revolution of Graphene for different applications: State-of-the-art. Surfaces and Interfaces 2017, 9, 93-106. [60] A. T. Smith, A. M. LaChance, S. Zeng, B. Liu, L. Sun. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science 2019, 1 (1), 31-47. [61] S. Park, R. S. Ruoff. Chemical methods for the production of graphenes. Nature Nanotechnology 2009, 4 (4), 217-224. [62] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials 2010, 22 (35), 3906-3924. [63] Y. Zhu, H. Ji, H.-M. Cheng, R. S. Ruoff. Mass production and industrial applications of graphene materials. National Science Review 2018, 5 (1), 90-101. [64] X. Wan, Y. Huang, Y. Chen. Focusing on Energy and Optoelectronic Applications: A Journey for Graphene and Graphene Oxide at Large Scale. Accounts of Chemical Research 2012, 45 (4), 598-607. [65] B. C. Brodie. XIII. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London 1859, 149, 249-259. [66] L. Staudenmaier. Verfahren zur darstellung der graphitsäure. Berichte der deutschen chemischen Gesellschaft 1898, 31 (2), 1481-1487. [67] W. S. Hummers, R. E. Offeman. Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958, 80 (6), 1339-1339. [68] N. I. Zaaba, K. L. Foo, U. Hashim, S. J. Tan, W.-W. Liu, C. H. Voon. Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence. Procedia Engineering 2017, 184, 469-477. [69] Q. Sun, S.-J. Park, S. Kim. Preparation and electrocatalytic oxidation performance of Pt/MnO2–graphene oxide nanocomposites. Journal of Industrial and Engineering Chemistry 2015, 26, 265-269. . H.-C. Hsu, C.-H. Wang, Y.-C. Chang, J.-H. Hu, B.-Y. Yao, C.-Y. Lin. Graphene oxides and carbon nanotubes embedded in polyacrylonitrile-based carbon nanofibers used as electrodes for supercapacitor. Journal of Physics and Chemistry of Solids 2015, 85, 62-68. [70] Y. Wang, Z. Wen, H. Zhang, G. Cao, Q. Sun, J. Cao. CuO Nanorods-Decorated Reduced Graphene Oxide Nanocatalysts for Catalytic Oxidation of CO. Catalysts 2016, 6 (12). [71] S.-S. Li, Y.-Y. Hu, J.-J. Feng, Z.-Y. Lv, J.-R. Chen, A.-J. Wang. Rapid room-temperature synthesis of Pd nanodendrites on reduced graphene oxide for catalytic oxidation of ethylene glycol and glycerol. International Journal of Hydrogen Energy 2014, 39 (8), 3730-3738. [72] A. Achari, K. K. R. Datta, M. De, V. P. Dravid, M. Eswaramoorthy. Amphiphilic aminoclay–RGO hybrids: a simple strategy to disperse a high concentration of RGO in water. Nanoscale 2013, 5 (12), 5316-5320. [73] H. Chen, Y. Wang, Y.-K. Lv. Catalytic oxidation of NO over MnO2 with different crystal structures. RSC Advances 2016, 6 (59), 54032-54040. [74] B. Zhao, R. Ran, X. Wu, D. Weng. Phase structures, morphologies, and NO catalytic oxidation activities of single-phase MnO2 catalysts. Applied Catalysis A: General 2016, 514, 24-34. [75] Y. Xin, L. Cheng, Y. Lv, J. Jia, D. Han, N. Zhang, J. Wang, Z. Zhang, X.-M. Cao. Experimental and Theoretical Insight into the Facet-Dependent Mechanisms of NO Oxidation Catalyzed by Structurally Diverse Mn2O3 Nanocrystals. ACS Catalysis 2022, 12 (1), 397-410. [76] Z. Song, Y. Wei, Z. a. Ma, X. Zhang, Y. Mao, J. Luo, X. Zhu, W. Liu, J. Jin. Influence of different sources of cerium on the oxidation-reduction ability and oxygen vacancies of CeO2-MnOx in the catalytic oxidation of toluene. Surfaces and Interfaces 2021, 24, 101042. [77] F. Lin, Z. Wang, J. Shao, D. Yuan, Y. He, Y. Zhu, K. Cen. Catalyst tolerance to SO2 and water vapor of Mn based bimetallic oxides for NO deep oxidation by ozone. RSC advances 2017, 7 (40), 25132-25143. [78] C. Mou, H. Li, N. Dong, S. Hui, D. Wang. Effect of Ce Addition on Adsorption and Oxidation of NO over MnO/Al2O3. Adsorption Science & Technology 2021, 2021. [79] Z. Ren, H. Zhang, G. Wang, Y. Pan, Z. Yu, H. Long. Effect of Calcination Temperature on the Activation Performance and Reaction Mechanism of Ce–Mn–Ru/TiO2 Catalysts for Selective Catalytic Reduction of NO with NH3. ACS omega 2020, 5 (51), 33357-33371. [80] E. R. Stobbe, B. A. de Boer, J. W. Geus. The reduction and oxidation behaviour of manganese oxides. Catalysis Today 1999, 47 (1), 161-167. [81] Y. Liu, P. Zhang. Catalytic decomposition of gaseous ozone over todorokite-type manganese dioxides at room temperature: effects of cerium modification. Applied Catalysis A: General 2017, 530, 102-110. [82] J. Zhang, R. Zhang, X. Chen, M. Tong, W. Kang, S. Guo, Y. Zhou, J. Lu. Simultaneous Removal of NO and SO2 from Flue Gas by Ozone Oxidation and NaOH Absorption. Industrial & Engineering Chemistry Research 2014, 53 (15), 6450-6456.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84851-
dc.description.abstract氮氧化物(NOx)為由工業鍋爐燃燒所產生之主要氣狀污染物之一,其對於環境的危害包含導致酸雨和參與光化學反應、形成光煙霧等等。現今,工業上大多以氨氣作為還原劑之選擇觸媒還原法(NH3-SCR)作為控制氮氧化物排放的主要方式。然而NH3¬-SCR其操作溫度不僅高、容許操作溫度範圍也相對侷限,這項限制使得操作溫度較低之工業製程並不適合使用NH3-SCR來控制NOx濃度。因此,作為可行之解決方案之一,以臭氧(O3)輔助之一氧化氮(NO)觸媒氧化法(catalytic oxidation)逐漸受到重視。若同時使用觸媒以及臭氧,即可實現於50‒300 °C之溫度區間中皆能達到高NO轉化率之NO氧化系統。 於本研究中,我們嘗試合成錳鈰氧化物與石墨烯之複合材(MnOx-CeOx-GO)作為觸媒,並調整鈰(Ce)和氧化石墨烯(graphene oxide, GO)於觸媒中的含量,以觀察Ce和GO之添加對觸媒活性的影響。我們於兩種不同的氧化環境測試觸媒於50‒350 °C之NO催化氧化活性。兩種氧化環境分別為:(1)含氧(O2)環境、(2)含O2和O3環境。NO催化氧化實驗之結果顯示Ce和GO之添加皆有助於提升NO催化氧化之活性,尤以150‒200 °C之活性提升最顯著。改質後的MnOx-CeOx-GO觸媒最高能於250 °C達成90%之NO轉化效率。 NO於本研究所建置之系統中透過兩種氧化機制進行反應,分別為:(1)以O3為氧化劑之NO氧化,以及(2)以O2為氧化劑之NO催化氧化。前者於溫度150 °C以下時有顯著NO轉化能力,後者則於溫度200‒250 °C時有較佳的NO轉化能力。於NO氧化實驗中,結果顯示出O3並不會和錳氧化物與氧化石墨烯之複合材(MnOx-GO)進行交互作用,兩者各自於系統中完成了NO之氧化反應,且O3有效地彌補了觸媒於150 °C下之低NO轉化率。使用MnOx-GO及O3輔助之NO觸媒氧化於50‒300 °C都展現出可觀的NO轉化能力。然而,本研究中所使用之MnOx-CeOx-GO則對於O3有一定的分解能力。Ce的添加將促使O3於觸媒表面發生之分解反應。此一分解反應對於同時使用O3和觸媒之氧化系統不利,進而導致150°C以下之NO轉化率低落。 針對上述兩種氧化機制之有效溫度,本研究分別於100°C和250°C進行二氧化硫(SO2)之抗性測試。結果顯示SO2雖對於由O3驅動之NO氧化並沒有負面影響,但對於觸媒卻會造成不可逆之失活(deactivation)反應。本研究所使用之錳氧化物與重量比例4%之氧化石墨烯複合材(MnOx-GO (4 wt%))在經過1.5小時之SO2毒化後,其250°C之NO轉化能力由80%降至10%,而錳鈰氧化物與重量比例10%之氧化石墨烯複合材(MnOx-CeOx-GO (10 wt%))在經過1.5小時之SO2毒化後,其250°C之NO轉化能力由90%降至40%,顯示Ce和GO的改質對於SO2抗性亦有相當程度的提升。zh_TW
dc.description.abstractNitrogen oxides (NOx), as one of the major gaseous pollutants resulting from industrial boiler combustion, may cause acid rain and take part in photochemical reactions in the ambient. Flue gas NOx emission has been widely controlled by selective catalytic reduction with ammonia (NH3-SCR); however, its relatively high and narrow operating temperature has limited its feasibility in low-temperature industries. To cope with the limitation, catalytic oxidation of nitric oxide (NO) with ozone (O3) was proposed as a possible solution. With the simultaneous use of O3 and catalysts, the catalytic oxidation may reach a significant NO conversion rate in a broad temperature range of 50‒300 °C. In this study, we synthesize the manganese and cerium oxide-supported graphene-based catalysts (MnOx-CeOx-GO) with different graphene oxide (GO) loadings. Besides, we evaluate the NO catalytic oxidation performance of each catalyst over 50‒350 °C under two oxidation modes: (1) oxygen (O2) only and (2) O2 with O3. Cerium and GO modification considerably enhanced NO oxidation efficiency around 150-200 °C. Two NO oxidation pathways were found in this research, which are: (1) NO homogeneous oxidation with O3, and (2) NO catalytic oxidation with O2 over catalysts. The first route with O3 is considered effective below 150 °C. The latter pathway with O2 over catalysts, as described by Mars-van Krevelen (MvK) mechanism, shows significant effectiveness around 200‒250 °C. No interaction between O3 and manganese oxide-supported graphene-based catalysts (MnOx-GO) was found during the NO oxidation tests. O3 successfully complements the NO oxidation efficiency below 150 °C. The NO oxidation with O3 over MnOx-GO catalysts exhibits excellent NO conversion over 50‒300 °C. However, O3 decomposition was observed over the MnOx-CeOx¬-GO catalysts. Ce doped on the catalysts’ surface may participate in decomposing O3, leading to poor NO oxidation with O3. Sulfur dioxide (SO2) tolerance tests were performed at 100 °C and 250 °C to survey the SO2 toxic effect on two oxidation mechanisms. SO2 showed no adverse effect on the NO oxidation with O3 but irreversibly deactivated the catalysts. The NO conversion at 250 °C over MnOx-GO (4 wt%) dropped from 80% to 10% after 1.5 h of SO2 exposure, while the NO conversion over MnOx-CeOx-GO (10 wt%) dropped from 90% to 40% under the same operating condition. The results indicated that Ce and GO modification could slightly enhance the SO2 resistance of the catalysts.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:29:00Z (GMT). No. of bitstreams: 1
U0001-2908202202483800.pdf: 19720255 bytes, checksum: 453e17ba13700f899020d3186d2fed5b (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 I Acknowledgment II 中文摘要 IV Abstract VI Content VIII List of Table XI List of Figure XII Chapter 1 Introduction 1 1.1 Motivation 1 1.1.1 Narrow and high operation temperature window 2 1.1.2 Toxicity 2 1.2 Possible solution 2 1.3 Research objective 5 Chapter 2 Literature review 7 2.1 Nitrogen oxides (NOx) emission 7 2.1.1 Generation of NOx 7 2.1.2 Environmental impacts and health concerns of NOx 11 2.2 NOx emission control technologies 13 2.3 Post-combustion NOx control technologies 15 2.3.1 Absorption 15 2.3.2 Adsorption 19 2.3.3 Electron beam 19 2.3.4 Selective catalytic reduction (SCR) 21 2.3.5 Selective non-catalytic reduction (SNCR) 26 2.3.6 Typical Post-combustion control systems 27 2.4 NO catalytic oxidation 29 2.4.1 Homogeneous oxidation 31 2.4.2 Heterogeneous oxidation 32 2.4.3 NO catalytic oxidation over manganese oxides catalysts 33 2.5 Key reaction parameters of NO catalytic oxidation 43 2.5.1 Operating temperature 43 2.5.2 O3/NO molar ratio 44 2.5.3 Presence of SO2 and H2O 45 2.6 Graphene and graphene oxide 48 2.6.1 Graphene 48 2.6.2 Graphene oxide (GO) 51 Chapter 3 Materials and methods 53 3.1 Research framework 53 3.2 Analytical instruments and experimental equipment 55 3.3 Preparation of graphene oxide and catalyst 57 3.3.1 GO synthesis by Hummers’ method 57 3.3.2 Ultrasonic impregnation of manganese and cerium oxide supported graphene-based materials (MnOx-CeOx-GO) and MnOx-GO 58 3.3.3 Synthesis of MnO2 and CeOx/MnO2 61 3.4 Physical and chemical characterization of catalysts 63 3.4.1 Surface area, pore volume, and pore size 63 3.4.2 Scanning electron microscopy (SEM) 63 3.4.3 X-ray diffraction (XRD) 63 3.4.4 X-ray photoelectron spectroscopy (XPS) 64 3.4.5 Thermogravimetric analysis (TGA) 64 3.4.6 H2-temperature programmed reduction (H2-TPR) 64 3.4.7 O2-temperature programmed desorption (O2-TPD) 65 3.5 NO catalytic oxidation tests 66 3.5.1 Experiment setup and test parameters 66 3.5.2 Catalytic oxidation performance 68 3.5.3 Sulfur tolerance over catalytic oxidation 68 Chapter 4 Results and discussion 69 4.1 Physiochemical characterization of catalysts 69 4.1.1 Surface area, pore volume, and pore size 69 4.1.2 Scanning electronic microscopy (SEM) 71 4.1.3 X-ray Diffraction measurement (XRD) 76 4.1.4 X-ray photoelectron spectroscopy (XPS) 79 4.1.5 Thermogravimetric analysis (TGA) 86 4.2 NO oxidation tests 89 4.2.1 NO homogeneous oxidation with O3 89 4.2.2 NO catalytic oxidation with O2 and O3 91 4.2.3 Synergistic effect of O3 and catalysts 95 4.3 SO2 tolerance test 98 4.4 Proposed NO oxidation mechanism 101 4.5 Proposed flue gas control system 103 Chapter 5 Conclusion and Recommendations 106 5.1 Conclusion 106 5.2 Recommendations for future research 108 Reference 109
dc.language.isoen
dc.title以錳鈰氧化物與石墨烯複合材於不足量臭氧條件進行一氧化氮觸媒氧化zh_TW
dc.titleCatalytic Oxidation of NO with Low Ozone Stoichiometry over MnOx-CeOx Supported Graphene-based Materialsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee游文岳(Wen-Yueh Yu),林亮毅(Liang-Yi Lin),魏銘彥(Ming-Yen Wey)
dc.subject.keyword氮氧化物,臭氧,一氧化氮觸媒氧化,錳鈰氧化物,氧化石墨烯,zh_TW
dc.subject.keywordnitrogen oxides,ozone,NO catalytic oxidation,Mn-Ce oxides,graphene oxide,en
dc.relation.page115
dc.identifier.doi10.6342/NTU202202907
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
dc.date.embargo-lift2027-08-29-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2908202202483800.pdf
  目前未授權公開取用
19.26 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved