Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84846
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳銘憲(Ming-Syan Chen)
dc.contributor.authorYan-Ting Wengen
dc.contributor.author翁嬿婷zh_TW
dc.date.accessioned2023-03-19T22:28:45Z-
dc.date.copyright2022-08-29
dc.date.issued2022
dc.date.submitted2022-08-26
dc.identifier.citation[1] Abbas Acar, Hidayet Aksu, A Selcuk Uluagac, and Mauro Conti. A survey on homomorphic encryption schemes: Theory and implementation. ACM Computing Surveys(Csur), 51(4):1–35, 2018. [2] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011. [3] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785–794, 2016. [4] Kewei Cheng, Tao Fan, Yilun Jin, Yang Liu, Tianjian Chen, Dimitrios Papadopoulos,and Qiang Yang. Secureboost: A lossless federated learning framework. IEEE Intelligent Systems, 36(6):87–98, 2021. [5] Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina F Balcan, and Le Song. Scalable kernel methods via doubly stochastic gradients. Advances in neural information processing systems, 27, 2014. [6] Bin Gu, Zhiyuan Dang, Xiang Li, and Heng Huang. Federated doubly stochastic kernel learning for vertically partitioned data. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 2483–2493, 2020. [7] Yan Kang, Yang Liu, and Tianjian Chen. Fedmvt: Semi-supervised vertical federated learning with multiview training. arXiv preprint arXiv:2008.10838, 2020. [8] Sun-Yuan Kung. Discriminant component analysis for privacy protection and visualization of big data. Multimedia Tools and Applications, 76(3):3999–4034, 2017. [9] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In International conference on the theory and applications of cryptographic techniques, pages 223–238. Springer, 1999. [10] Donald B Rubin. Multiple imputation for nonresponse in surveys, volume 81. John Wiley & Sons, 2004. [11] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19, 2019. [12] Hwanjo Yu, Jaideep Vaidya, and Xiaoqian Jiang. Privacy-preserving svm classification on vertically partitioned data. In Pacific-asia conference on knowledge discovery and data mining, pages 647–656. Springer, 2006. [13] Gong-Duo Zhang, Shen-Yi Zhao, Hao Gao, and Wu-Jun Li. Feature-distributed svrg for high-dimensional linear classification. arXiv preprint arXiv:1802.03604, 2018.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84846-
dc.description.abstract垂直式聯邦式學習可以在隱私洩露不會發生的情況下,讓多家擁有同樣本但不同資料特徵的機構們共同學習一個模型。然而,這樣的學習前提是多家機構必須用有足夠的樣本重疊數必須要夠多,否則模型效果可能會不彰。在現實情形下,機構中擁有的資料裡能被認定為是可使用資料(重疊樣本)是非常少的,大部分的資料都無法被垂直式聯邦學習所使用。因此,我們提出了一個聯邦式降維演算法 (FedDRA),可以優化上述情況發生時的模型效果。我們替判別成分分析(discriminant component analysis)這個降維演算法演算法設計了一套安全的計算協議,使之可以符合垂直式聯邦式學習的隱私保護要求。此外我們設計特殊的優化,使利用那些為無重疊資料來使模型結果仍維持較好的準確性。我們主要的貢獻主要有三,一是在可使用重疊樣本有限時,我們仍維持較好的效能。二是相比於該領域其他研究,我們擁有最低的預測期傳輸成本,在實務上更有效率。三是我們是第一個提供了一種較為彈性垂直式聯邦式學習演算法,可以搭配各種下游任務或後續演算法使用。zh_TW
dc.description.abstractVertical federated learning (VFL) enables different parties that have different features of the same sample to learn a machine learning model together without exposing their own data. However, it is essential that all collaborative parties share enough overlapping samples to ensure the performance of VFL models. In reality, the fraction of overlapping samples is usually insufficient and most non-overlapping samples are unutilized. Therefore, we propose a dimensionality reduction algorithm for vertical federated learning, a supervised projection approach that improves the performance of VFL models under insufficient training samples. We adapt discriminant component analysis(DCA) to VFL settings and combine the information extracted from non-overlapping parts into the FedDRA(federated Dimensionality Reduction Algorithm). Our main contributions are three: 1. Performing well with a small number of overlapping samples. 2. It is a adaptable VFL framework that can be combined any data analysis technology 3. When compared to other VFL works, it has the lowest communication cost during prediction.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:28:45Z (GMT). No. of bitstreams: 1
U0001-1708202214500600.pdf: 1103470 bytes, checksum: 357d11a03a8b3ccbd94e43a8c4d15895 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 i 摘要 ii Abstract iii Contents iv List of Figures vi List of Tables vii 1 Introduction 1 2 Related work 4 3 Methodology 6 3.1 Brief Review of Dimensionality Reduction algorithms . . . . . . . . 6 3.1.1 DCAalgorithm......................... 8 3.2 FedDRAalgorithm........................... 9 3.2.1 Procedure of Training FedDRA ................ 9 3.2.2 Trainin gaclassifier based on FedDRA . . . . . . . . . . . . 15 3.2.3 Predicting with a classifier................... 16 3.3 FedDRA optimization for insufficient overlapping samples . . . . . 16 3.4 TheoreticalPropertiesAnalysis .................... 17 3.4.1 CommunicationCost...................... 17 3.4.2 Computation cost for encryption-related computations . . . . 19 3.5 SecurityAnalysis............................ 21 4 Experiment 22 4.1 ExperimentalIntroduction ....................... 22 4.2 Experiments for the Comparison between FedDRA and State-Of-The-ArtVFLworks............................. 23 4.2.1 DesignofExperiments..................... 23 4.2.2 ResultsandDiscussions .................... 24 4.3 Experiments for the Comparison between FedDRA and FedMVT . . 28 4.3.1 DesignofExperiments..................... 28 4.3.2 ResultsandDiscussions .................... 29 5 Conclusion 31 Bibliography 32
dc.language.isoen
dc.subject合作學習zh_TW
dc.subject機器學習zh_TW
dc.subject監督式特徵投射zh_TW
dc.subject隱私保障zh_TW
dc.subject垂直式聯邦學習zh_TW
dc.subjectSupervised subspace projectionen
dc.subjectMachine learningen
dc.subject Vertical federated Learningen
dc.subjectVertical federated Learningen
dc.subjectCollaborative learningen
dc.subjectPri-vacy preservingen
dc.titleFedDRA: 用於垂直分割之聯邦式學習之考量隱私的降維演算法zh_TW
dc.titleFedDRA: Privacy-Preserving Dimensionality Reduction Algorithm for Vertical Federated Learningen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉彌妍(Mi-Yen Yeh),帥宏翰(Hong-Han Huai),陳祝嵩(Chu-Song Chen)
dc.subject.keyword機器學習,垂直式聯邦學習,合作學習,隱私保障,監督式特徵投射,zh_TW
dc.subject.keywordMachine learning, Vertical federated Learning,,Vertical federated Learning,Collaborative learning,Pri-vacy preserving,Supervised subspace projection,en
dc.relation.page33
dc.identifier.doi10.6342/NTU202202505
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
dc.date.embargo-lift2022-08-29-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1708202214500600.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved