請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84842完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡協澄(Hsieh-Chen Tsai) | |
| dc.contributor.author | Min-Lin Tsai | en |
| dc.contributor.author | 蔡旻霖 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:28:32Z | - |
| dc.date.copyright | 2022-08-30 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-29 | |
| dc.identifier.citation | [1] Anderson, E. A., & Szewczyk, A. A. (1997). Effects of a splitter plate on the near wake of a circular cylinder in 2 and 3-dimensional flow configurations.URL https://doi.org/10.1007/s003480050098 [2] Bao, S., Chen, S., Liu, Z., Li, J., Wang, H., & Zheng, C. (2012). Simulation of the flow around an upstream transversely oscillating cylinder and a stationary cylinder in tandem. Physics of Fluids, 24(2), 023603.URL https://doi.org/10.1063/1.3683565 [3] Colonius, T., & Taira, K. (2008). A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions. Computer Methods in Applied Mechanics and Engineering, 197(25-28), 2131–2146. [4] Farrell, B. F., & Ioannou, P. J. (1993). Stochastic forcing of the linearized navier–stokes equations. Physics of Fluids A: Fluid Dynamics, 5(11), 2600–2609.URL https://doi.org/10.1063/1.858894 [5] Gómez, F., Blackburn, H. M., Rudman, M., Sharma, A. S., & McKeon, B. J.(2016).A reduced-order model of three-dimensional unsteady flow in a cavity based on the resolvent operator. Journal of Fluid Mechanics, 798. [6] Hsieh-chen, H.-C., & Colonius, T. (2014). Coriolis Effect on Dynamic Stall in a Vertical Axis Wind Turbine at Moderate Reynolds Number.URL https://arc.aiaa.org/doi/abs/10.2514/6.2014-3140 [7] Jeun, J., Nichols, J. W., & Jovanović, M. R. (2016). Input-output analysis of high-speed axisymmetric isothermal jet noise. Physics of Fluids, 28(4), 047101.URL https://doi.org/10.1063/1.4946886 [8] Jin, B., Illingworth, S. J., & Sandberg, R. D. (2020). Feedback control of vortex shedding using a resolvent-based modelling approach. Journal of Fluid Mechanics,897, A26. [9] Jovanović, M. R. (2004). Modeling, analysis, and control of spatially distributed systems. Ph.D. thesis, University of California at Santa Barbara, CA. [10] Jovanović, M. R., & Bamieh, B. (2005). Componentwise energy amplification inchannel flows. Journal of Fluid Mechanics, 534, 145–183. [11] Lin, T.-Y., Hsieh, H.-Y., & Tsai, H.-C. (2020). A target-fixed immersed-boundary formulation for rigid bodies interacting with fluid flow.URL https://arxiv.org/abs/2001.01576 [12] Liu, Q., Sun, Y., Yeh, C.-A., Ukeiley, L. S., Cattafesta, L. N., & Taira, K. (2021).Unsteady control of supersonic turbulent cavity flow based on resolvent analysis.Journal of Fluid Mechanics, 925, A5. [13] Martini, E., Jung, J., Cavalieri, A. V., Jordan, P., & Towne, A. (2022). Resolvent-based tools for optimal estimation and control via the wiener–hopf formalism. Journal of Fluid Mechanics, 937, A19. [14] McKeon, B. J., & Sharma, A. S. (2010). A critical-layer framework for turbulent pipe flow. Journal of Fluid Mechanics, 658, 336–382. [15] Moarref, R., Sharma, A. S., Tropp, J. A., & McKeon, B. J. (2013). Model-based scaling of the streamwise energy density in high-reynolds-number turbulent channels. Journal of Fluid Mechanics, 734, 275–316. [16] Munday, P. M., & Taira, K. (2013). On the lock-on of vortex shedding to oscillatoryactuation around a circular cylinder. Physics of Fluids, 25(1), 013601.URL https://doi.org/10.1063/1.4772977 [17] Padovan, A., Otto, S. E., & Rowley, C. W. (2020). Analysis of amplification mech-anisms and cross-frequency interactions in nonlinear flows via the harmonic resolvent. Journal of Fluid Mechanics, 900, A14. [18] Pickering, E., Rigas, G., Schmidt, O. T., Sipp, D., & Colonius, T. (2021). Optimaleddy viscosity for resolvent-based models of coherent structures in turbulent jets.Journal of Fluid Mechanics, 917.URL https://doi.org/10.1017%2Fjfm.2021.232 [19] Schmid, P., & Henningson, D. (2001). Stability and Transition in Shear Flows, vol.42. [20] Schmidt, O. T., Towne, A., Rigas, G., Colonius, T., & Brès, G. A. (2018). Spectralanalysis of jet turbulence. Journal of Fluid Mechanics, 855, 953–982. [21] Schumm, M., Berger, E., & Monkewitz, P. A. (1994). Self-excited oscillations in the wake of two-dimensional bluff bodies and their control. Journal of Fluid Mechanics,271, 17–53. [22] Seidel, J., Siegel, S., Fagley, C., Cohen, K., & McLaughlin, T. (2008). Feedback control of a circular cylinder wake. Journal of Aerospace Engineering, 222, 379–392. [23] Sharma, A. S. (2019). Elements of resolvent methods in fluid mechanics: notes for an introductory short course.URL https://arxiv.org/abs/1909.04515 [24] Sharma, A. S., & McKeon, B. J. (2013). On coherent structure in wall turbulence.Journal of Fluid Mechanics, 728, 196–238.URL https://doi.org/10.1017%2Fjfm.2013.286 [25] Symon, S., Rosenberg, K., Dawson, S. T. M., & McKeon, B. J. (2018). Non-normality and classification of amplification mechanisms in stability and resolvent analysis. Physical Review Fluids, 3(5).URL https://doi.org/10.1103%2Fphysrevfluids.3.053902 [26] Taira, K., Brunton, S. L., Dawson, S. T. M., Rowley, C. W., Colonius, T., McKeon,B. J., Schmidt, O. T., Gordeyev, S., Theofilis, V., & Ukeiley, L. S. (2017). Modal analysis of fluid flows: An overview. AIAA Journal, 55(12), 4013–4041.URL https://doi.org/10.2514/1.J056060 [27] Taira, K., Hemati, M. S., Brunton, S. L., Sun, Y., Duraisamy, K., Bagheri, S., Daw-son, S. T. M., & Yeh, C.-A. (2020). Modal analysis of fluid flows: Applications and outlook. AIAA Journal, 58(3), 998–1022.URL https://doi.org/10.2514/1.J058462 [28] Tokumaru, P. T., & Dimotakis, P. E. (1991). Rotary oscillation control of a cylinder wake. Journal of Fluid Mechanics, 224, 77–90. [29] Trefethen, L. N., & Embree, M. (2005). Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press.URL http://www.jstor.org/stable/j.ctvzxx9kj.6 [30] Trefethen, L. N., Trefethen, A. E., Reddy, S. C., & Driscoll, T. A. (1993). Hydrody-namic stability without eigenvalues. Science, 261(5121), 578–584.URL http://www.jstor.org/stable/2882016 [31] Wereley, N. M. (1991). Analysis and control of linear periodically time varying systems. Ph.D. thesis, Massachusetts Institute of Technology. [32] Yeh, C.-A., Gopalakrishnan Meena, M., & Taira, K. (2021). Network broadcastanalysis and control of turbulent flows. Journal of Fluid Mechanics, 910, A15. [33] Yeh, C.-A., & Taira, K. (2019). Resolvent-analysis-based design of airfoil separation control. Journal of Fluid Mechanics, 867, 572–610. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84842 | - |
| dc.description.abstract | 本研究基於預解分析提出一個適用於週期性運動剛體的開回路主動式流場控制設計方法,並以雷諾數為 500,司特勞克數為 0.36 的縱遙圓柱作為實例進行驗證。將時間平均的流場作為基底流,應用雷諾分解可將統御方程式線性化,得到一組具有週期性係數的線性系統方程。本研究利用弗洛蓋理論與李亞普諾夫-弗洛蓋轉換,將原本的週期性線性系統轉換成常係數線性系統。至此,預解分析才得以配合擬頻譜,找出在轉換後的常係數線性系統中,最佳的流場控制頻率為司特勞克數 0.1464。以此頻率在原系統中所產生的諧波頻率與次諧波頻率進行流場控制控制,並利用切線方向的物體力模擬制動器的效果,最佳的結果可使升力擾動之相對減量達到 25.7%,達到流場控制提升空氣動力性能的目的。 | zh_TW |
| dc.description.abstract | This study presents an open-loop active flow control design process for a periodic-moving rigid body based on resolvent analysis and validates with a plunging cylinder at a Strouhal number of 0.36 and a Reynolds number of 500. With a time-averaged based flow, the linearized vorticity equation and a linear system with a time-periodic coefficient are obtained. The study applies Floquet's theorem and Lyapunov-Floquet theorem to transform the original linear time-periodic system into a linear time-independent system. The resolvent analysis technique can then be utilized to reveal the optimal actuating frequency, Strouhal number of 0.1464, of the transformed system by depicting its pseudospectrum. According to the harmonic frequencies and the sub-harmonic frequencies in original system, the tangential-direction control is able to reduce relative lift fluctuation up to 25.7\% and enhances the aerodynamic performance. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:28:32Z (GMT). No. of bitstreams: 1 U0001-1407202217525300.pdf: 32558550 bytes, checksum: 86bf38f2023b8c57a5c751848d5a6812 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Acknowledgements 1 摘要 2 Abstract 3 Contents 4 List of Figures 6 Denotation 8 Chapter 1 Introduction and Motivation 1 1.1 Flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Dynamical system . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Modal analysis of fluid flows . . . . . . . . . . . . . . . . . . . . . 3 1.4 Resolvent analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.6 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 2 Mathematical Formulations and Numerical Method 9 2.1 Problem set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Flow control set-up . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Mathematics Formulations . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 Derivation of the LTP system . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Derivation of LTI system . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.3 Resolvent analysis of LTI system . . . . . . . . . . . . . . . . . . . 19 2.3 Resolvent analysis of the plunging cylinder . . . . . . . . . . . . . . 20 2.3.1 Simulation set-up and the base flow . . . . . . . . . . . . . . . . . 20 2.3.2 Floquet multipliers and Floquet exponents . . . . . . . . . . . . . . 22 2.3.3 SVD of resolvent analysis and pseudospectrum . . . . . . . . . . . 24 Chapter 3 Controlled flows 29 3.1 Simulations of controlled flows . . . . . . . . . . . . . . . . . . . . 29 Chapter 4 Conclusion 38 References 39 Appendix A — Alternative form of the incompressible Navier-Stokes equations in a non-inertial frame of reference 44 | |
| dc.language.iso | en | |
| dc.subject | 預解分析 | zh_TW |
| dc.subject | 開回路控制 | zh_TW |
| dc.subject | 主動式流場控制 | zh_TW |
| dc.subject | 空氣動力學 | zh_TW |
| dc.subject | 弗洛蓋定理 | zh_TW |
| dc.subject | 流場控制 | zh_TW |
| dc.subject | Aerodynamics | en |
| dc.subject | Floquet theory | en |
| dc.subject | Flow control | en |
| dc.subject | Resolvent analysis 3 | en |
| dc.subject | Open-loop control | en |
| dc.subject | Active flow control | en |
| dc.title | 基於預解分析之縱搖圓柱的流場控制 | zh_TW |
| dc.title | Flow control of a plunging cylinder based on resolvent analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0002-1932-6321 | |
| dc.contributor.oralexamcommittee | 楊馥菱(Fu-Ling Yang),伍次寅(Tzu-Yin Wu) | |
| dc.subject.keyword | 流場控制,開回路控制,主動式流場控制,空氣動力學,弗洛蓋定理,預解分析, | zh_TW |
| dc.subject.keyword | Flow control,Open-loop control,Active flow control,Aerodynamics,Floquet theory,Resolvent analysis 3, | en |
| dc.relation.page | 46 | |
| dc.identifier.doi | 10.6342/NTU202201469 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-30 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1407202217525300.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 31.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
