Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8482
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡明哲(Ming-Jer Tsai)
dc.contributor.authorDong-Ying Leeen
dc.contributor.author李東穎zh_TW
dc.date.accessioned2021-05-20T00:55:36Z-
dc.date.available2020-07-28
dc.date.available2021-05-20T00:55:36Z-
dc.date.copyright2020-07-28
dc.date.issued2020
dc.date.submitted2020-07-11
dc.identifier.citation山邊豐彥(2018)木構造。易博士文化,城邦文化事業股份有限公司,台北市。
王仁、陳財輝、劉瓊霦(2010)台灣長期忽視的生物資源-竹。台灣林業36(6):12-18。
王仁、劉瓊霦(2012)由生理與生化性狀評估孟宗竹的砍伐與利用。國立中興大學森林研究所碩士論文,台中市。
王義仲(2011)竹林經營對減緩溫室效應之助益。林業研究專訊18(1):8-11。
吳順昭、王秀華(1976)臺灣竹材之構造研究。臺灣大學農學院森林學系與國科會與農復會合作報告第16號。
李佳韋、林金祿、林敏郎、黃世建、蔡明哲(2007)台灣傳統建築直榫木接頭力學行為研究。台灣林業科學22(2):125-134。
林雅茵(2014)竹構建築應用面對之課題。林業研究專訊 21(1):15-19。
林裕鈞、張嘉祥、游家誠(2011)台灣孟宗竹材構件結構行為實驗研究。中華民國建築學會「建築學報」75:1-22。
林維治、江濤、張添榮(1976)梨果竹之引種與加工利用研究。林業試驗所試驗報告第281號。
唐讓雷(1989)竹材之強度性質。林產工業 8(3):65-78。
馬子斌(1964)臺灣產重要竹材之物理性質及力學性質。林業試驗所試驗報告第106號。
許伶瑛、李文昭(2011)六種常見竹材之形態特徵及熱解產物。林業研究專訊 18(1):37-42。
許建發、吳金村(1986)高溫乾燥對桂竹物理化學性質之影響。國立中興大學森林研究所碩士論文,台中市。
曾子亭(2016)竹材之適應性接頭與竹構造數位模擬程序。國立交通大學建築研究所碩士論文,新竹縣。
游家誠(2009)古蹟歷史建築修復施作過程竹材保護棚架系統之研擬與應用研究。國立成功大學建築研究所碩士論文,台南市。
楊忠憲(2016)竹材機械性質量測及竹車組裝標準流程之建立。明志科技大學機械工程研究所碩士論文,新北市。
楊登鈞、楊欣諭(2017)徑向梯度特性對竹材機械及柔韌性質之影響。林業研究季刊39(3):209-218。
蔡銘容(2013)現代綠建材-竹材在未來台灣建築應用之探討。中華大學土木研究所碩士論文,新竹市。
穆寶貴(2007)台灣竹構建築結構體構法之調查研究。國立成功大學建築研究所碩士論文,台南市。
葉民權(2011)竹屋設計。林業研究專訊18(1):33-36。
Amada, S. and S. Untao (2001) Fracture properties of bamboo. Compos. B. Eng. 32:451-459.
Awaludin, A. and V. Andriani (2014) Bolted bamboo joints reinforced with fibers. Procedia Eng. 95:15-21.
Branco, J. and T. Descamps (2015) Analysis and strengthening of carpentry joints. Constr. Build. Mater. 97:34-47.
Chand, N., M. Shukla and M. K. Sharma (2008) Analysis of mechanical behaviour of bamboo (Dendrocalamus strictus) by Using FEM. J. Nat. Fibers 5:127-137.
Correal, J. F., J. S. Echeverry, F. Ramirez and L. E. Yamin (2014) Experimental evaluation of physical and mechanical properties of glued laminated Guadua angustifolia Kunth. Constr Build Mater. 3:105-112.
Davies, C (2008) Bamboo connections. MA thesis, University of Bath, United Kingdom.
Li, S.H., Q.Y. Zeng, Y.L. Xiao, S.Y. Fu and B.L. Zhou (1995) Biomimicry of bamboo bast fiber with engineering composite materials. Mater. Sci. Eng., C 3:125-130.
Isagi, Y., T. Kawahara, K. Kamo and H. Ito (1997) Net production and carbon cycling in a bamboo Phyllostachys pubescens stand. Plant Ecol. 130:41-52.
Janssen, J. J. A. (1981) Bamboo in building structures. PhD thesis, Eindhoven University of Technology, Holland.
Janssen, J. J. A. (2000) Design and building with bamboo. INBAR technical report 20.
Mahdavi, M., P. L. Clouston and S. R. Arwade (2011) Development of laminated bamboo lumber: review of processing, performance, and economical considerations. J. Mater. Civ. Eng. 23(7):1036-1042.
Kobayashi, H., M. Daimaruya and M. Oda (1996) Imapct lateral compression test for circular ceramic tube. J. Soc. Mater. Sci. 45(8):901-906.
Masdar, A., B. Suhendro and S. Siswosukarto, D. Sulistyo (2014) Determinant of critical distance of bolt on bamboo connection. J. Teknol. 69(6):111-115.
Minke, G. (2016) Building with bamboo: design and technology of a sustainable architecture second and revised edition. Birkhäuser, Switzerland.
Mitch, D., K. A. Harries and B. Sharma (2010) Characterization of splitting behavior of bamboo culms. J. Mater. Civil. Eng. 22:1195-1199.
Moran, R., C. Benitez, H. F. Sliva and J. J. Garcia (2016) Design of steel connectors for structural bamboo members. Paper presented at International Conference on Advanced Mechatronics, Design, and Manufacturing Technology (AMDM), Cali.
Obataya, E., P. Kitin and H. Yamauchi (2007) Bending characteristics of bamboo (Phyllostachys pubescens) with respect to its fiber–foam composite structure. Wood Sci. Technol. 41:385-400.
Oka, G., A. Triwiyono, A. Awaludin, and S. Siswosukarto (2015) Experimental and theoretical investigation of bolted bamboo joints without void filled material. Mech. Mater. 776:59-65.
Phanratanamala, S (2014) The study of design and structural potential of bamboo bractical joints and frame truss system. MA. thesis, Kyushu University, Japan.
Raj, D. and B. Agarwal (2014) Bamboo as a building material. J. Civil Eng. Environme.Technol. 1(3):56-61.
Reynolds, T., B. Sharma, K. Harries and M. Ramage (2016) Dowelled structural connections in laminated bamboo and timber. Compos. B. Eng. 90:232-240.
Sharma, B., A. Gatóo, M. Bock and M. Ramage (2015) Engineered bamboo for structural applications. Constr. Build. Mater. 81:66-73.
Sharma, P.,K. Dhanwantri and S. Mehta (2014) Bamboo as a building material. International J. Civil Eng. Research. 3(5):249-254.
Vahanvati, M. (2015) The challenge of connecting bamboo. de 10th World Bamboo congress, Damyang.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8482-
dc.description.abstract本研究使用臺灣桂竹(Phyllostachys makinoi)竹桿做為試驗材料,以十字搭接做為接合形式,並評估日本黑繩、鐵線及金屬托架做為竹材接點固定工法之影響,先利用橫向部分壓縮試驗對竹桿進行機械性質檢驗及篩選,並透過拉伸、滑移及旋轉三種機械性質試驗以建立竹材接點性質試驗方法及進行力學行為之分析。由橫向部分壓縮試驗結果指出增加竹節數目及取樣位置接近竹桿基部皆能增加竹桿部分壓縮之極限荷載,而單節及無節、中段及末端兩組試材具有相似之部分壓縮強度。拉伸試驗指出增加竹節數目對綁繩接點極限荷載之增強效果比增加迴圈數有效,而3迴圈即可使竹桿間有足夠之拉伸極限荷載(602.52 kgf)。三種接點之拉伸勁度由大至小依序為鐵線、綁繩及金屬托架,而極限荷載方面則反之。滑移試驗指出綁繩接點於3迴圈後滑移勁度即無明顯增強效應,而竹節之存在能夠有效增加綁繩接點及鐵線接點之極限荷載及滑移勁度,而金屬托架接點具有最佳之滑移勁度,滑移極限荷載由大至小依序為金屬托架接點、綁繩接點及鐵線接點。旋轉試驗中三種接點之旋轉勁度由大至小分別為金屬托架、綁繩及鐵線,於分類上三種接點之接合形式皆為不能移動但可自由轉動之鉸接點。zh_TW
dc.description.abstractThis study evaluated the mechanical properties and behaviors of bamboo joints connected by different connection type. Cross-lap joints of Phyllostachys makinoi culms were connected by using Japanese black rope, iron wire and steel angle brackets. Mechanical properties of the bamboo culms were examined using lateral partial compression test, and the mechanical behaviors of cross-lap bamboo joints were determined using tensile, slip and rotation tests. Results of lateral partial compression test indicated enhancement in ultimate partial compressive load with increase in number of bamboo nodes and with sampling position closer to the base of the bamboo culm. Similar performance in partial compressive strength was observed for specimens with no and single node as well as with sampling positions in middle and end of bamboo culms. Results of tensile test revealed higher ultimate load in lashing joints with larger number of bamboo nodes than in those with more loops. It was found that three loops could yield sufficient tensile load (602.52 kgf) between bamboo culms. Of the three fixing materials, iron wire gave the highest tensile stiffness to the joint, followed by rope and steel angle bracket. In contrast, steel angle bracket gave the highest ultimate load, followed by rope and iron wire. Performance in slip test showed no significant gain in slip stiffness for joints lashed with more than three loops. Moreover, the presence of bamboo nodes could effectively increase the ultimate load and slip stiffness of joints lashed with rope and iron wire. Comparing results between tensile and slip tests showed that joints fixed with different materials had directional stiffness and ultimate load. Joints fixed with steel angle bracket had the highest slip stiffness and rotational stiffness, followed by those lashed with rope and iron wire. Regardless of the fixing materials used, the studied cross-lap joints are all classified as hinged joints.en
dc.description.provenanceMade available in DSpace on 2021-05-20T00:55:36Z (GMT). No. of bitstreams: 1
U0001-2706202012043800.pdf: 4511235 bytes, checksum: 8f854cbeab84c5724abf58e7460790ae (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents謝誌 i
摘要 ii
Abstract iii
目錄 v
表目錄 viii
圖目錄 ix
第一章、前言 1
第二章、文獻回顧 3
2.1 竹子特性及解剖結構 3
2.2 竹材之永續性 4
2.3 竹材物理及機械性質 4
2.4 竹材之結構用途 7
2.5竹材之接合設計 10
2.6竹材接點強度 15
第三章、材料與方法 23
3.1試驗材料 23
3.2試驗流程 24
3.3竹桿橫向部分壓縮試驗 26
3.4竹材接點製備 29
3.4.1綁繩接點 29
3.4.2鐵線接點 30
3.4.3金屬托架接點 31
3.5竹材接點拉伸試驗 32
3.5.1綁繩接點 33
3.5.2鐵線接點 34
3.5.3金屬托架接點 34
3.6綁繩接點滑移試驗 35
3.6.1綁繩接點 36
3.6.2鐵線接點 36
3.6.3金屬托架接點 36
3.7接點旋轉試驗 37
3.7.1綁繩接點 38
3.7.2鐵線接點 39
3.7.3金屬托架接點 39
第四章、結果與討論 40
4.1竹桿橫向部分壓縮試驗 40
4.1.1竹桿破壞模式 40
4.1.2竹桿橫向部分壓縮性質 43
4.2竹材接點拉伸試驗 44
4.2.1綁繩接點破壞模式 44
4.2.2綁繩接點力學行為 44
4.2.3綁繩接點極限性質 46
4.2.4鐵線接點破壞模式 48
4.2.5鐵線接點力學行為 49
4.2.6鐵線接點極限性質 50
4.2.7金屬托架接點破壞模式 51
4.2.8金屬托架接點力學行為 52
4.2.9金屬托架接點極限性質 53
4.3竹材接點滑移試驗 54
4.3.1綁繩接點破壞模式 54
4.3.2綁繩接點力學行為 55
4.3.3綁繩接點極限性質 57
4.3.4鐵線接點破壞模式 58
4.3.5鐵線接點力學行為 59
4.3.6綁繩接點極限性質 61
4.3.7金屬托架接點破壞模式 62
4.3.8金屬托架接點力學行為 62
4.3.9金屬托架接點極限性質 64
4.4竹材接點旋轉試驗 65
4.4.1綁繩接點破壞模式 65
4.4.2綁繩接點力學行為 66
4.4.3鐵線接點破壞模式 67
4.4.4鐵線接點力學行為 68
4.4.5金屬托架接點破壞模式 69
4.4.6金屬托架接點力學行為 70
第五章、結論 72
參考文獻 73
dc.language.isozh-TW
dc.title不同連接法對桂竹十字搭接接點力學行為之影響zh_TW
dc.titleEffect of different connection types on mechanical behavior of cross-lap joints of Phyllostachys makinoi culmsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊德新(Te-Hsin Yang),張豐丞(Feng-Cheng Chang),林法勤(Far-Ching Lin),莊閔傑(Min-Jay Chung)
dc.subject.keyword連接法,竹材接點,十字搭接,綁繩,鐵線,金屬托架,力學行為,zh_TW
dc.subject.keywordconnection type,bamboo joint,cross lapping,lashing,iron wire,steel angle bracket,mechanical behavior,en
dc.relation.page75
dc.identifier.doi10.6342/NTU202001161
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-07-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
U0001-2706202012043800.pdf4.41 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved