請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84810
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 趙聖德(Sheng-Der Chao) | |
dc.contributor.author | Ching-Hsiang Yu | en |
dc.contributor.author | 游景翔 | zh_TW |
dc.date.accessioned | 2023-03-19T22:26:50Z | - |
dc.date.copyright | 2022-09-08 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-30 | |
dc.identifier.citation | [1] Li, A. H. T., Huang, S. C., & Chao, S. D.(2010).Molecular dynamics simulation of liquid carbon tetrachloride using ab initio force field. The Journal of chemical physics, 132(2), 024506. [2] Yin, C. C., Li, A. H., & Chao, S. D.(2013).Liquid chloroform structure from computer simulation with a full ab initio intermolecular interaction potential. The Journal of Chemical Physics, 139(19), 194501. [3] Chen, Q. S., & Chao, S. D.(2019).Quantum chemistry calculated intermolecular interaction and molecular dynamics simulation of dichloromethane. National Taiwan University, Institute of Applied Mechanics. [4] Huang, W. J., & Chao, S. D.(2021). Quantum chemistry calculated intermolecular interaction and molecular dynamics simulation of chloromethane、chloroform molecules. National Taiwan University, Institute of Applied Mechanics. [5] Chao, S. W., Li, A. H. T., & Chao, S. D.(2009). Molecular dynamics simulation of fluid methane properties using ab initio intermolecular interaction potential. Journal of computational chemistry, 30(12), 1839-1849. [6] Stone, A. J.(1996). The theory of intermolecular force. International Series Of Monographs On Chemistry, vol.32. [7] Dunning, T. H.(2000). Aroad map for the calculation of molecular binding energies. The Journal of Physical Chemistry A, 104(40), 9062-9080. [8] Parker, T. M., Parrish, R. M., Burns, L. A., Ryno, A.G., & Sherrill, C. D.(2014). Levels of symmetry adapted perturbation theory(SAPT). I. efficiency and performance for interaction energies. The Journal of Chemical Physics, 140(9), 094106. [9] Stone, A.(2013). The theory of intermolecular forces. OUP Oxford. [10] Grimme, S.,Ehrlich, S., Antony, J., & Krieg, H.(2010). A consistent and accurate ab initio parametrization od density functional dispersion correction (DFT-D) for the 94e lements H-Pu. The Journal of Chemical Physics, 132(15), 154104. [11] Marchetti, O., & Werner, H. J.(2009).Accurate calculations of intermolecular interaction energies using explicitly correlated coupled cluster wave functions and a dispersion-weighted MP2 method. The Journal of Physical Chemistry A, 113(43), 11580-11585. [12] Raghavachari, K., Pople, J. A., Trucks, G. W., & Head-Gordon, M. (1989). A fifth-order perturbation comparison of electron correlation theories. Chemical Physics Letters, 157(6), 479-483. [13] Jeziorski, B., Moszynski, R., & Szalewicz, K.(1994).Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chemical Review, 94(7), 1887-1930. [14] Marques, M. A., & Gross, E. K.(2004). Time-dependent density functional theory. Annual Review of Physics Chemistry, 55, 427-455. [15] Frish, M. J., et al.(2009). Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford. [16] Rey R.(2007). Quantitative characterization of orientational order in liquid carbon tetrachloride. The Journal of Chemical Physics, 126(16), 164506. [17] Boys, S. F., & Bernardi, F. D.(1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19(4), 553-566. [18] Krishnan, R. B. J. S., Binkley, J. S., Seeger, R., & Pople, J.A.(1980). Self-consistemt molecular orbital methods. XX. A basis set for correlated wave functions. The Journal of Chemical Physics, 72(1), 650-654. [19] Dunning Jr, T. H.(1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. The Journal of Chemical Physics, 90(2), 1007-1023. [20] Turney, J.M., et al.(2012). Psi4 : an open-source ab initio electronic structure program. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(4), 556-565. [21] Bertagnolli, H., Leicht, D. O., & Zeidler, M. D.(1978).Molecular Physics, 35(1), 193-197. [22] Williams, Q., Cox, J. T., & Gordy, W.(1952). Molecular Structure of Bromoform. The Journal of Chemical Physics, 20(10), 1524-1525. [23] Rapaport, D. C.(2004). The art of molecular dymanics simulation. Cambridge University Press. [24] Saturated Liquid Density.(2022, May 13). Dortmund Data Bank. Retrieved from http://ddbonline.ddbst.de/DIPPR105DensityCalculation/DIPPR105CalculationCGI.exe?component=Chloroform. [25] Sherman, A. (1928).The Coefficient Of Expansion Of Bromoform. Notes, 50, 1119-1121. [26] Sandhu, H. S.(1974). Coefficient Of Self-Diffusion In Liquids Using Pulsed NMR Techniques. Journal Of Magnetic Resonance, 17, 34-40. [27] Martin, J. M.(1996). Ab initio total atomization energies of small molecules-towards the basis set limit. Chemical Physics Letters, 259(5-6), 669-678. [28] Feller, D.(1992). Application of systematic sequences of wave functions to the water dimer. The Journal of Chemical Physics, 96(8), 6104-6114. [29] Helgaker, T., Klopper, W., Koch, H., & Noga, J.(1997). Basis-set convergence of correlated calculations on water. The Journal of Chemical Physics, 106(23), 9639-9646. [30] Press, W. H., Flannery, B. P., Teukolsky, S. a. & Vetterling, W. T.(1989). Numerical recipes in Pascal: the art of scientific computing(vol.1). Cambridge University Press. [31] Szilvia Pothoczki, Laszlo Temleitner, Shinji Kohara, Pal Jovari and Laszlo Pusztai(2010). The liquid structure of haloforms CHCl3 and CHBr3. Journal of Physics:Condensed Matter, 22, 404211. [32] Martin, M. E., Losa, A.M., Galvan, I. F. & Aguilar, M. A.(2006). An ASEP/MD study of liquid chloroform. Journal of Molecular Structure:Theochem, 775, 81-86. [33] J. J. Shephard, A. K. Soper, S. K. Callear, S. Imberti, J. S. O. Evans & C. G. Salzmann(2015). Polar stacking of molecules in liquid chloroform. Chemical Communication, 51(23), 4770-4773. [34] John J. Karnes, Ilan Benjamin(2017). On the local intermolecular ordering and dynamics of liquid chloroform. Journal of Molecular Liquids, 248, 121-126. [35] John J. Karnes, Ilan Benjamin(2021). Deconstructing the Local Intermolecular Ordering and Dynamics of Liquid Chloroform and Bromoform. The Journal of Physical Chemistry B, 125, 3629-3637. [36] Szilvia Pothoczki, Laszlo Temleitner & Laszlo Pusztai(2015). Structure of Neat Liquids Consisting of (Perfect and Nearly) Tetrahedral Molecules.Chemical Reviews, 115(24), 13308-13361. [37] Szilvia Pothoczki, Laszlo Temleitner &Laszlo Pusztai (2011). Detailed intermolecular structure of molecular liquids containing slightly distorted tetrahedral molecules with C3v symmetry: Chloroform, bromoform, and methyl-iodide. The Journal of Chemical Physics, 134(4), 044521. [38] Jacob J. Shephard, John S. O. Evans and Christoph G. Salzmann(2019). Local Structure and Orientational Ordering in Liquid Bromoform. Molecular Physics, vol.117. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84810 | - |
dc.description.abstract | 在近期文獻中針對氯仿的局部結構有爭論,於是我們在量子力學計算中首先以MP2/aug-cc-PVQZ對三氯甲烷與三溴甲烷的單體分子結構進行最佳化,並使用包含BSSE(Basis-Set Superposition Error)修正的自洽理論(Hartee-Fock, HF)、微擾理論(Møller-Plesset Perturbation Theory)與耦合簇理論(Coupled Cluster Method, CC)進行三氯甲烷與三溴甲烷的二聚體間分子作用力計算,且搭配Krishnan’s medium size和Dunning’s correlation consistent的基底進行二聚體分子結構最佳化,最後將MP2與CCSD(T)的各種基底之計算結果進行比較。進行最佳化過程後,可得10種三氯甲烷與8種三溴甲烷的構型,其中以MP2方法對前者使用aug-cc-PVQZ基底且對後者使用aug-cc-PVTZ基底來求得完整勢能曲線,並使用SAPT0方法將勢能以誘導能、靜電能、交換能及色散能組成,以了解各構型分子間排斥力和吸引力之影響。 在分子動力學模擬中,我們使用5-sites model搭配Lennard-Jones potential function及庫倫項,並對10種三氯甲烷與8種三溴甲烷的二聚體構型勢能曲線進行擬合及建構力場,將其代入牛頓方程式來進行分子動力學模擬。計算過程中,模擬溫度從三相點沿著汽化曲線至臨界點,以求得在各溫度下分子之徑向分佈函數(Radial Distribution Function, RDF)、速度自相關函數(Velocity Autocorrelation Function, VAF)、擴散係數(Diffusion Constant)與黏滯係數(Viscosity Coefficient)。且在三氯甲烷與三溴甲烷的局部結構部分,我們模擬方向相關函數(Orientation Correlation Function)與對相關函數(Pair Correlation Function),並與學長在2021年時所模擬的結果來進行比較,以上模擬結果與實驗值都有一定的準確度,可證明以量子化學為基礎所計算的力場進行分子動力學模擬有一定程度之可靠度,以詳細分析氯仿在局部結構的探討。 | zh_TW |
dc.description.abstract | There is a debate about the local structure of chloroform in the recent literature, so we first optimized the monomer molecular structures of chloroform and bromoform with MP2/aug-cc-PVQZ in quantum mechanical calculations, and used Hartee-Fock theory, Møller-Plesset Perturbation Theory and Coupled Cluster Theory are included the BSSE (Basis-Set Superposition Error) correction to calculate the molecular force between the dimers of chloroform and bromomethane, including the use of Krishnan's medium size and Dunning's correlation consistent substrate. Finally, the calculated results of MP2 and CCSD(T) for various bases are compared. After the optimization process, we obtained 10 configurations of chloroform by MP2/aug-cc-PVQZ and 8 configurations of bromomethane by MP2/aug-cc-PVTZ, and use SAPT0 method to combine potential energy into induction energy, electrostatic energy, exchange energy and dispersion energy to understand the influence of repulsion and attraction between molecules of each configuration. In the molecular dynamics simulation, we use the 5-sites model with the Lennard-Jones potential function and Coulomb term, and fit the potential energy curves of 10 chloroform configurations and 8 bromoform configurations, finally, constructed a force field , which is substituted into Newton's equations for molecular dynamics simulations. In the calculation process, the simulated temperature is from the triple point along the vaporization curve to the critical point to obtain the Radial Distribution Function、Velocity Autocorrelation Function、Diffusion Constant and Viscosity Coefficient of each temperature. And in the local structure of chloroform and bromoform, we simulated the Orientation Correlation Function and the Pair Correlation Function, and compared them with the results simulated by the senior in 2021. The above simulation results and experimental values have a good accuracy, which can be proved Molecular dynamics simulations based on the force fields calculated on the basis of quantum chemistry have a certain degree of reliability to analyze the local structure of chloroform in detail. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:26:50Z (GMT). No. of bitstreams: 1 U0001-2608202210594300.pdf: 8192420 bytes, checksum: 00a94dee88eba52f3dea8e10d10a0bda (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員審定書………………………………………………………………………... # 致謝……………………………………………………………………………………… i 摘要……………………………………………………………………………………... ii ABSTRACT……………………………………………………………………………. iii 目錄……………………………………………………………………………………... v 圖目錄………………………………………………………………………...………. viii 表目錄…………………………………………………………………………………. xii 第一章 緒論……………………………………………………………………………. 1 第二章 基本理論………………………………………………………………………. 4 2.1 量子力學理論…………………………………………………………….. 4 2.1.1 薛丁格方程式(Schrödinger equation) ……………………………. 4 2.1.2 波恩-奧本海默近似法(Born-Oppenheimer approximation………. 6 2.2 分子軌域理論…………………………………………………………….. 9 2.2.1 全初始法(Ab initio) ………………………………………………. 9 2.2.2 Hartree–Fock 近似法(Hartree–Fock approximation, HF)………… 9 2.2.3 微擾理論(Møller-Plesset Perturbation Theory)………………..… 12 2.2.4 耦合簇理論(Coupled Cluster Method, CC)............................... 15 2.3 分子動力學............................................................... 17 2.3.1 基本原理…………………………….. ………………………….. 17 2.3.2 週期性邊界條件(Periodic boundary condition)........................... 19 2.3.3 徑向分佈函數(Radial Distribution Function, RDF)....................... 20 2.3.4 速度自相關函數(Velocity Autocorrelation Function, VAF)…….. 23 2.3.5 擴散係數(Diffusion Constant)…………………………………… 25 2.3.6 黏滯係數(Viscosity Coefficient)…………………………………. 26 第三章 計算方法………………………………………………………………........... 27 3.1 二聚體之量子化學計算方法…………………………………………… 28 3.1.1 單體結構最佳化計算……………………………………………. 28 3.1.2 二聚體能量計算…………………………………………………. 28 3.2 曲線擬合方法…………………………………………………………… 31 3.3 分子動力學計算方法…………………………………………………… 32 第四章 模擬與計算結果……………………………………………………………... 33 4.1 HF之量子化學計算結果………………………………………………... 34 4.1.1 三氯甲烷二聚體…………………………………………………. 34 4.1.2 三溴甲烷二聚體…………………………………………………. 38 4.2 MP2之量子化學計算結果……………………………………………… 42 4.2.1 三氯甲烷二聚體…………………………………………………. 42 4.2.2 三溴甲烷二聚體…………………………………………………. 46 4.3 CCSD(T)之量子化學計算結果………………………………………….. 50 4.3.1 三氯甲烷二聚體…………………………………………………. 50 4.3.2 三溴甲烷二聚體…………………………………………………. 52 4.4 SAPT之量子化學分析結果…………………………………………….. 54 4.5 三氯甲烷二聚體之能量曲線擬合結果……………………………….... 57 4.6 三溴甲烷二聚體之能量曲線擬合結果………………………………… 62 4.7 分子動力學模擬結果…………………………………………………… 67 4.7.1 徑向分佈函數之模擬結果………………………………………. 68 4.7.2 速度自相關函數之模擬結果…………………………………..... 73 4.7.3 擴散係數之模擬結果……………………………………………. 74 4.7.4 剪力黏滯係數之模擬結果………………………………………. 75 4.7.5 二維對相關函數之模擬結果……………………………………. 77 4.7.6 方向相關函數之模擬結果………………………………………. 80 4.7.7 各實驗理論探討…………………………………………………. 88 第五章 結論與未來展望……………………………………………………………... 93 5.1 量子化學計算結論……………………………………………………… 93 5.2 分子動力學模擬結論…………………………………………………… 94 5.3 未來展望………………………………………………………………… 96 參考文獻………………………………………………………………………………. 97 附錄A………………………………………………………………………………... 101 | |
dc.language.iso | zh-TW | |
dc.title | 使用第一原理與分子動力學模擬探討三氯甲烷與三溴甲烷之阿波羅構型 | zh_TW |
dc.title | Using Ab initio and Molecular Dynamics Simulations to explore the Apollo Configurations of Chloroform and Bromoform Molecules | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李奕霈(Yi-Pei Li),張書瑋(Shu-Wei Chang),周宏隆(Hung-Lung Chou),李皇德(Huang-Te Li) | |
dc.subject.keyword | 三氯甲烷,三溴甲烷,分子動力學模擬,自洽理論,微擾理論,耦合簇理論,徑向分佈函數,速度自相關函數,擴散係數,黏滯係數,方向相關函數,對相關函數,Gaussian09套裝軟體, | zh_TW |
dc.subject.keyword | chloroform,bromoform,molecular dynamics simulation,Hartee-Fock theory,Møller-Plesset Perturbation Theory,coupled cluster theory,radial distribution function,velocity autocorrelation function,diffusion coefficient,viscosity coefficient,orientation Correlation Function,pair correlation function,Gaussian09 software, | en |
dc.relation.page | 101 | |
dc.identifier.doi | 10.6342/NTU202202843 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-08-30 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
dc.date.embargo-lift | 2025-12-31 | - |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2608202210594300.pdf 目前未授權公開取用 | 8 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。